Hamiltonian of the One-Dimensional Torsion Schrödinger Equation in a Complex-Valued Basis of Mathieu Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An analytical method for calculating the matrix elements of the Hamiltonian of the torsion Schrödinger equation in a basis of Mathieu functions is developed. The matrix elements are represented by integrals of the product of three Mathieu functions, and also the derivatives of these functions. Analytical expressions for the matrix elements are obtained by approximating the Mathieu functions by Fourier series and are products of the corresponding Fourier expansion coefficients. It is shown that replacing high-order Mathieu functions by one harmonic leads to insignificant errors in the calculation.

Sobre autores

A. Belov

Tver State University

Autor responsável pela correspondência
Email: abelov@tversu.ru
Rússia, Tver

V. Turovtsev

Tver State Medical University

Email: abelov@tversu.ru
Rússia, Tver

Yu. Orlov

Tver State University

Email: abelov@tversu.ru
Rússia, Tver

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017