Dispersion of Electromagnetic, Elastic and Diffusion Waves in Crystalline Solids
- Авторлар: Gladkov S.O.1
-
Мекемелер:
- Moscow Aviation Institute (National Research University)
- Шығарылым: Том 62, № 3 (2019)
- Беттер: 471-483
- Бөлім: Article
- URL: https://bakhtiniada.ru/1064-8887/article/view/241665
- DOI: https://doi.org/10.1007/s11182-019-01734-8
- ID: 241665
Дәйексөз келтіру
Аннотация
The paper analyzes the dispersion characteristics of eigen oscillation frequencies of electromagnetic, elastic and diffusion waves. The analysis is based on the general invariant expression of the Lagrange function density in a solid subjected to the elastoplastic deformation with u(r,t) strain vector of its inner points, electromagnetic field potentials A(r,t) and φ(r,t ) , and concentration n(r,t) of diffusing substance with regard to a correlation between these parameters. Owing to the least-action principle, four linear, interconnected differential equations are obtained. Form their solution all the four frequency spectra ωi (k ) are derived, where i=1,2,3,4 and k is the wave vector. It is found that the obtained dispersions are the important part in the quantum case, if taking the interaction between the four components into consideration, when knowledge of the function ωi (k ) is required.
Негізгі сөздер
Авторлар туралы
S. Gladkov
Moscow Aviation Institute (National Research University)
Хат алмасуға жауапты Автор.
Email: sglad51@mail.ru
Ресей, Moscow
Қосымша файлдар
