Specific features of proton interaction with transistor structures having a 2D AlGaN/GaN channel
- 作者: Emtsev V.V.1, Zavarin E.E.1, Kozlovskii M.A.1, Kudoyarov M.F.1, Lundin V.V.1, Oganesyan G.A.1, Petrov V.N.1, Poloskin D.S.1, Sakharov A.V.1, Troshkov S.I.1, Shmidt N.M.1, V’yuginov V.N.2, Zybin A.A.2, Parnes Y.M.2, Vidyakin S.I.3, Gudkov A.G.3, Chernyakov A.E.4, Kozlovskii V.V.5
-
隶属关系:
- Ioffe Physical Technical Institute
- Svetlana-Elektronpribor Company
- Bauman Moscow State Technical University
- Submicron Heterostructures for Microelectronics Research and Engineering Center
- Peter the Great St. Petersburg Polytechnic University
- 期: 卷 42, 编号 11 (2016)
- 页面: 1079-1082
- 栏目: Article
- URL: https://bakhtiniada.ru/1063-7850/article/view/201884
- DOI: https://doi.org/10.1134/S1063785016110031
- ID: 201884
如何引用文章
详细
It has been shown that the interaction of 1 MeV protons at doses of (0.5–2) × 1014 cm–2 with transistor structures having a 2D AlGaN/GaN channel (AlGaN/GaN HEMTs) is accompanied not only by the generation of point defects, but also by the formation of local regions with a disordered nanomaterial. The degree of disorder of the nanomaterial was evaluated by multifractal analysis methods. An increase in the degree of disorder of the nanomaterial, manifested the most clearly at a proton dose of 2 × 1014 cm–2, leads to several-fold changes in the mobility and electron density in the 2D channel of HEMT structures. In this case, the transistors show a decrease in the source–drain current and an order-of-magnitude increase in the gate leakage current. In HEMT structures having an enhanced disorder of the nanomaterial prior to exposure to protons, proton irradiation results in suppression of the 2D conductivity in the channel and failure of the transistors, even at a dose of 1 × 1014 cm–2.
作者简介
V. Emtsev
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
E. Zavarin
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
M. Kozlovskii
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
M. Kudoyarov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
V. Lundin
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
G. Oganesyan
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
V. Petrov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
D. Poloskin
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
A. Sakharov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
S. Troshkov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
N. Shmidt
Ioffe Physical Technical Institute
编辑信件的主要联系方式.
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
V. V’yuginov
Svetlana-Elektronpribor Company
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
A. Zybin
Svetlana-Elektronpribor Company
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
Ya. Parnes
Svetlana-Elektronpribor Company
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
S. Vidyakin
Bauman Moscow State Technical University
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, Moscow, 105005
A. Gudkov
Bauman Moscow State Technical University
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, Moscow, 105005
A. Chernyakov
Submicron Heterostructures for Microelectronics Research and Engineering Center
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 194021
V. Kozlovskii
Peter the Great St. Petersburg Polytechnic University
Email: Natalia.Shmidt@mail.ioffe.ru
俄罗斯联邦, St. Petersburg, 195251
补充文件
