The Effect of Nanofluids on the Heat-Transfer Capacity of Miniature Thermosyphons for Electronics Cooling


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Stable nanofluids based on DG-100 grade carbon black and carbon nanotubes have been prepared, and their influence on the maximum heat-transfer capacity and thermal resistance of closed-loop two-phase thermosyphons (TPTs) intended for electronics cooling have been studied. A more than twofold increase in the critical heat flux of these TPTs as compared to those filled with water has been obtained along with a sharp decrease in their thermal resistance. It is suggested that this effect is not only due to the high thermal conductivity of the proposed nanofluids, but is also related to the formation of a specific porous structure hindering the appearance of a vapor film and enhancing the boiling process.

Sobre autores

B. Bondarenko

The Gas Institute, National Academy of Sciences of Ukraine

Email: vasily.moraru@gmail.com
Ucrânia, Kyiv, 03113

V. Moraru

The Gas Institute, National Academy of Sciences of Ukraine

Autor responsável pela correspondência
Email: vasily.moraru@gmail.com
Ucrânia, Kyiv, 03113

V. Kravets

Igor Sikorsky Kyiv Polytechnic Institute

Email: vasily.moraru@gmail.com
Ucrânia, Kyiv, 03056

G. Behmard

Igor Sikorsky Kyiv Polytechnic Institute

Email: vasily.moraru@gmail.com
Ucrânia, Kyiv, 03056

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019