Specific features of proton interaction with transistor structures having a 2D AlGaN/GaN channel
- Авторы: Emtsev V.V.1, Zavarin E.E.1, Kozlovskii M.A.1, Kudoyarov M.F.1, Lundin V.V.1, Oganesyan G.A.1, Petrov V.N.1, Poloskin D.S.1, Sakharov A.V.1, Troshkov S.I.1, Shmidt N.M.1, V’yuginov V.N.2, Zybin A.A.2, Parnes Y.M.2, Vidyakin S.I.3, Gudkov A.G.3, Chernyakov A.E.4, Kozlovskii V.V.5
-
Учреждения:
- Ioffe Physical Technical Institute
- Svetlana-Elektronpribor Company
- Bauman Moscow State Technical University
- Submicron Heterostructures for Microelectronics Research and Engineering Center
- Peter the Great St. Petersburg Polytechnic University
- Выпуск: Том 42, № 11 (2016)
- Страницы: 1079-1082
- Раздел: Article
- URL: https://bakhtiniada.ru/1063-7850/article/view/201884
- DOI: https://doi.org/10.1134/S1063785016110031
- ID: 201884
Цитировать
Аннотация
It has been shown that the interaction of 1 MeV protons at doses of (0.5–2) × 1014 cm–2 with transistor structures having a 2D AlGaN/GaN channel (AlGaN/GaN HEMTs) is accompanied not only by the generation of point defects, but also by the formation of local regions with a disordered nanomaterial. The degree of disorder of the nanomaterial was evaluated by multifractal analysis methods. An increase in the degree of disorder of the nanomaterial, manifested the most clearly at a proton dose of 2 × 1014 cm–2, leads to several-fold changes in the mobility and electron density in the 2D channel of HEMT structures. In this case, the transistors show a decrease in the source–drain current and an order-of-magnitude increase in the gate leakage current. In HEMT structures having an enhanced disorder of the nanomaterial prior to exposure to protons, proton irradiation results in suppression of the 2D conductivity in the channel and failure of the transistors, even at a dose of 1 × 1014 cm–2.
Об авторах
V. Emtsev
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
E. Zavarin
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
M. Kozlovskii
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
M. Kudoyarov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
V. Lundin
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
G. Oganesyan
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
V. Petrov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
D. Poloskin
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
A. Sakharov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
S. Troshkov
Ioffe Physical Technical Institute
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
N. Shmidt
Ioffe Physical Technical Institute
Автор, ответственный за переписку.
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
V. V’yuginov
Svetlana-Elektronpribor Company
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
A. Zybin
Svetlana-Elektronpribor Company
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
Ya. Parnes
Svetlana-Elektronpribor Company
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
S. Vidyakin
Bauman Moscow State Technical University
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, Moscow, 105005
A. Gudkov
Bauman Moscow State Technical University
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, Moscow, 105005
A. Chernyakov
Submicron Heterostructures for Microelectronics Research and Engineering Center
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 194021
V. Kozlovskii
Peter the Great St. Petersburg Polytechnic University
Email: Natalia.Shmidt@mail.ioffe.ru
Россия, St. Petersburg, 195251
Дополнительные файлы
