Density Control of InP/GaInP Quantum Dots Grown by Metal-Organic Vapor-Phase Epitaxy
- Autores: Lebedev D.V.1, Kalyuzhnyy N.A.1, Mintairov S.A.1, Belyaev K.G.1, Rakhlin M.V.1, Toropov A.A.1, Brunkov P.1,2, Vlasov A.S.1, Merz J.3, Rouvimov S.3, Oktyabrsky S.4, Yakimov M.4, Mukhin I.V.5, Shelaev A.V.6, Bykov V.A.6, Romanova A.Y.2, Buryak P.A.2, Mintairov A.M.1,3
-
Afiliações:
- Ioffe Institute
- St. Petersburg Polytechnical University
- University of Notre Dame
- Institute for Materials
- St. Petersburg Academic University
- NT-MDT Spectrum Instruments
- Edição: Volume 52, Nº 4 (2018)
- Páginas: 497-501
- Seção: XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Quantum Wells, Quantum Wires, Quantum Dots, and Band Structure
- URL: https://bakhtiniada.ru/1063-7826/article/view/202852
- DOI: https://doi.org/10.1134/S1063782618040206
- ID: 202852
Citar
Resumo
We investigated structural and emission properties of self-organized InP/GaInP quantum dots (QD) grown by metal organic chemical vapor deposition using an amount of deposited In from 7 to 2 monolayers (ML). In the uncapped samples, using atomic force microscopy (AFM), we observed lateral sizes of 100–200 nm, together with a bimodal height distribution having maxima at ∼5 and ∼15 nm, which we denoted as QDs of type A and B, respectively; and reduction of the density of the type-B dots from 4.4 to 1.6 μm–2. The reduction of the density of B-type dots were observed also using transmission electron microscopy of the capped samples. Using single dot low-temperature photoluminescence (PL) spectroscopy we demonstrated effects of Wigner localization for the electrons accumulated in these dots.
Sobre autores
D. Lebedev
Ioffe Institute
Autor responsável pela correspondência
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
N. Kalyuzhnyy
Ioffe Institute
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
S. Mintairov
Ioffe Institute
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
K. Belyaev
Ioffe Institute
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
M. Rakhlin
Ioffe Institute
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
A. Toropov
Ioffe Institute
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
P. Brunkov
Ioffe Institute; St. Petersburg Polytechnical University
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021; St. Petersburg, 195251
A. Vlasov
Ioffe Institute
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
J. Merz
University of Notre Dame
Email: Lebedev.dmitri@mail.ioffe.ru
Estados Unidos da América, Notre Dame, IN, 46556
S. Rouvimov
University of Notre Dame
Email: Lebedev.dmitri@mail.ioffe.ru
Estados Unidos da América, Notre Dame, IN, 46556
S. Oktyabrsky
Institute for Materials
Email: Lebedev.dmitri@mail.ioffe.ru
Estados Unidos da América, Albany, NY, 12203
M. Yakimov
Institute for Materials
Email: Lebedev.dmitri@mail.ioffe.ru
Estados Unidos da América, Albany, NY, 12203
I. Mukhin
St. Petersburg Academic University
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021
A. Shelaev
NT-MDT Spectrum Instruments
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, Zelenograd, 124460
V. Bykov
NT-MDT Spectrum Instruments
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, Zelenograd, 124460
A. Romanova
St. Petersburg Polytechnical University
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 195251
P. Buryak
St. Petersburg Polytechnical University
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 195251
A. Mintairov
Ioffe Institute; University of Notre Dame
Email: Lebedev.dmitri@mail.ioffe.ru
Rússia, St. Petersburg, 194021; Notre Dame, IN, 46556
Arquivos suplementares
