Investigation of a Polariton Condensate in Micropillars in a High Magnetic Field


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The photoluminescence of a nonequilibrium polariton condensate in cylindrical and rectangular micropillars etched on the surface of a high-Q GaAs microcavity is investigated in magnetic fields of up to 12 T. The measurements are carried out under different levels of nonresonant optical pumping with nanosecond laser pulses for a wide range of cavity detuning. As far as nonresonant excitation produces a high density of excitons in a reservoir, it should be expected that the exciton–polariton interaction, which depends on the pump level, has a considerable effect on the Zeeman splitting and polarization of the condensate. However, measurements of the Zeeman splitting and polarization in high magnetic fields demonstrate that only minor changes take place up to the highest available pump levels. This means that, in the case under study, the effect of exciton–polariton interaction on the polariton system is insignificant. At the same time, the data obtained provide an estimate for the exciton density in the reservoir. In contrast to cylindrical micropillars, the photoluminescence of the condensate in rectangular micropillars consists of two perpendicularly linearly polarized lines which retain a high degree of linear polarization even in a field as high as 12 T. The Zeeman splitting in this case is nearly independent of the pump power. The degrees of both circular and linear polarization change with pump power, but these changes are noticeably smaller than the ones predicted theoretically. This indicates that the system of polaritons in micropillars deviates considerably from thermodynamic equilibrium.

作者简介

A. Chernenko

Institute of Solid State Physics

编辑信件的主要联系方式.
Email: chernen@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow region, 142432

A. Brichkin

Institute of Solid State Physics

Email: chernen@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow region, 142432

S. Novikov

Institute of Solid State Physics

Email: chernen@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow region, 142432

C. Schneider

Technische Physik, Wilhelm Conrad Roentgen Research Center for Complex Material Systems

Email: chernen@yandex.ru
德国, Wuerzburg, D-97074

S. Hoefling

Technische Physik, Wilhelm Conrad Roentgen Research Center for Complex Material Systems

Email: chernen@yandex.ru
德国, Wuerzburg, D-97074

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018