Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 123, № 3 (2016)

Atoms, Molecules, Optics

Electromagnetic-field amplification in finite one-dimensional photonic crystals

Gorelik V., Kapaev V.

Аннотация

The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

Journal of Experimental and Theoretical Physics. 2016;123(3):373-381
pages 373-381 views

Interference stabilization of atoms in a strong laser field for obtaining inversion and lasing in the visible and VUV frequency ranges

Bogatskaya A., Volkova E., Popov A.

Аннотация

The interference stabilization of Rydberg atoms in strong laser fields is proposed for producing a plasma channel with the inverse population. Inversion between a group of Rydberg levels and low-lying excited levels and the ground state permits amplification and lasing in the IR, visible, and VUV frequency ranges. The lasing and light amplification processes in the plasma channel are analyzed using rate equations and the efficiency of this method is compared with that in the usual method for high harmonic generation during rescattering of electrons by a parent ion.

Journal of Experimental and Theoretical Physics. 2016;123(3):382-390
pages 382-390 views

Resonant states for the scattering of slow particles by screened potentials

Bruk Y., Voloshchuk A.

Аннотация

Partial resonant situations for the scattering of slow particles with nonzero angular momenta by short-range screened Yukawa and Buckingham potentials are considered. The problem of electron scattering by a hydrogen atom placed in a plasma medium is discussed. A general scheme of resonances has been constructed in the Pais approximation.

Journal of Experimental and Theoretical Physics. 2016;123(3):391-394
pages 391-394 views

Faraday effect on the Rb D1 line in a cell with a thickness of half the wavelength of light

Sargsyan A., Pashayan-Leroy Y., Leroy C., Sarkisyan D.

Аннотация

The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D1 line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D1 line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocell had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power PL ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the Fg = 3 → Fe = 2 transition of the 85Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.

Journal of Experimental and Theoretical Physics. 2016;123(3):395-402
pages 395-402 views

Nuclei, Particles, Fields, Gravitation, and Astrophysics

Detection of global phenomena of technogenic ultraviolet and infrared nightglows onboard the Vernov satellite

Garipov G., Panasyuk M., Svertilov S., Bogomolov V., Barinova V., Saleev K.

Аннотация

The generation of transients in the Earth’s upper atmosphere under the action of electron fluxes and high- and low-frequency electromagnetic waves has been studied onboard the small Vernov spacecraft (solar synchronous orbit, 98° inclination, height 640–830 km). The studies were carried out with ultraviolet (UV, 240–380 nm), red–infrared (IR, 610–800 nm), gamma-ray (0.01–3 MeV), and electron (0.2–15 MeV) detectors as well as with high-frequency (0.05–15 MHz) and low-frequency (0.1 Hz–40 kHz) radio receivers. Artificial optical signals distributed along the meridian in an extended region of latitudes in the Earth’s Northern and Southern Hemispheres modulated by a low frequency were recorded during the nadir observations at nighttime. Examples of the oscillograms of such signals in the UV and IR spectral ranges and their global distribution are presented. The emission generation altitude and the atmospheric components that can be the sources of this emission are discussed. Particular attention is given to the technogenic causes of this glow in the ionosphere under the action of powerful low- and high-frequency radio stations on the ionosphere.

Journal of Experimental and Theoretical Physics. 2016;123(3):403-410
pages 403-410 views

Cassiopeia A: Supernova explosion and expansion simulations under strong asymmetry conditions

Yakhin R., Rozanov V., Zmitrenko N., Stepanov R.

Аннотация

We propose a model for the explosion of a supernova and the expansion of its ejecta in the presence of a strong initial asymmetry (at the explosion time) in the central part of the star (core) and a possible smallscale asymmetry in the peripheral regions. The Chandra and NuSTAR observations of ejecta in the Cassiopeia A supernova remnant are analyzed. Based on our 1D and 2D numerical simulations performed using the DIANA and NUTCY codes, we propose a model for the explosion and expansion of ejecta that explains the observed experimental data where the materials initially located in the central region of the star end up on the periphery of the cloud of ejecta.

Journal of Experimental and Theoretical Physics. 2016;123(3):411-419
pages 411-419 views

Solids and Liquids

Coherent spin dynamics of carriers in ferromagnetic semiconductor heterostructures with an Mn δ layer

Zaitsev S., Akimov I., Langer L., Danilov Y., Dorokhin M., Zvonkov B., Yakovlev D., Bayer M.

Аннотация

The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerr signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.

Journal of Experimental and Theoretical Physics. 2016;123(3):420-428
pages 420-428 views

On the nature of the liquid-to-glass transition equation

Sanditov D.

Аннотация

Within the model of delocalized atoms, it is shown that the parameter δTg, which enters the glasstransition equation qτg = δTg and characterizes the temperature interval in which the structure of a liquid is frozen, is determined by the fluctuation volume fraction \({f_g} = {\left( {{{\Delta {V_e}} \mathord{\left/ {\vphantom {{\Delta {V_e}} V}} \right. \kern-\nulldelimiterspace} V}} \right)_{T = {T_g}}}\) frozen at the glass-transition temperature Tg and the temperature Tg itself. The parameter δTg is estimated by data on fg and Tg. The results obtained are in agreement with the values of δTg calculated by the Williams–Landel–Ferry (WLF) equation, as well as with the product qτg—the left-hand side of the glass-transition equation (q is the cooling rate of the melt, and τg is the structural relaxation time at the glass-transition temperature). Glasses of the same class with fg ≈ const exhibit a linear correlation between δTg and Tg. It is established that the currently used methods of Bartenev and Nemilov for calculating δTg yield overestimated values, which is associated with the assumption, made during deriving the calculation formulas, that the activation energy of the glass-transition process is constant. A generalized Bartenev equation is derived for the dependence of the glass-transition temperature on the cooling rate of the melt with regard to the temperature dependence of the activation energy of the glasstransition process. A modified version of the kinetic glass-transition criterion is proposed. A conception is developed that the fluctuation volume fraction f = ΔVe/V can be interpreted as an internal structural parameter analogous to the parameter ξ in the Mandelstam–Leontovich theory, and a conjecture is put forward that the delocalization of an active atom—its critical displacement from the equilibrium position—can be considered as one of possible variants of excitation of a particle in the Vol’kenshtein–Ptitsyn theory. The experimental data used in the study refer to a constant cooling rate of q = 0.05 K/s (3 K/min).

Journal of Experimental and Theoretical Physics. 2016;123(3):429-442
pages 429-442 views

Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures

Enkovich P., Brazhkin V., Lyapin S., Novikov A., Kanda H., Stishov S.

Аннотация

The Raman scattering by isotopically pure 12C and 13C diamond single crystals and by isotopically mixed 12.5C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the 12C and 13C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the 12C and 13C diamonds is 0.15%. The investigation of the isotopically mixed 12.5C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.

Journal of Experimental and Theoretical Physics. 2016;123(3):443-451
pages 443-451 views

Analysis of the crystal lattice instability for cage–cluster systems using the superatom model

Serebrennikov D., Clementyev E., Alekseev P.

Аннотация

We have investigated the lattice dynamics for a number of rare-earth hexaborides based on the superatom model within which the boron octahedron is substituted by one superatom with a mass equal to the mass of six boron atoms. Phenomenological models have been constructed for the acoustic and lowenergy optical phonon modes in RB6 (R = La, Gd, Tb, Dy) compounds. Using DyB6 as an example, we have studied the anomalous softening of longitudinal acoustic phonons in several crystallographic directions, an effect that is also typical of GdB6 and TbB6. The softening of the acoustic branches is shown to be achieved through the introduction of negative interatomic force constants between rare-earth ions. We discuss the structural instability of hexaborides based on 4f elements, the role of valence instability in the lattice dynamics, and the influence of the number of f electrons on the degree of softening of phonon modes.

Journal of Experimental and Theoretical Physics. 2016;123(3):452-460
pages 452-460 views

Order, Disorder, and Phase Transition in Condensed System

Magnetic and absorbing properties of M-type substituted hexaferrites BaFe12–xGaxO19 (0.1 < x < 1.2)

Trukhanov S., Trukhanov A., Kostishin V., Panina L., Kazakevich I., Turchenko V., Oleinik V., Yakovenko E., Matsui L.

Аннотация

X-ray powder diffraction is used to determine the unit cell parameters and to refine the crystal structure of the solid solutions of M-type hexagonal barium ferrite BaFe12–xGaxO19 (x = 0.1–1.2) with isostructural diamagnetic cation Ga3+ substitution at T = 300 K. As the level of substitution increases, the unit cell parameters are shown to decrease monotonically. The temperature (300 K ≤ T ≤ 750 K, H = 8.6 kOe) and field (T = 300 K,–20 kOe ≤ H ≤ 20 kOe) dependences of the saturation magnetization of these solid solutions are studied with a vibrating-sample magnetometer. The concentration dependences of the Curie temperature TC, the specific spontaneous magnetization, and the coercive force are plotted. The magnetic parameters are found to decrease with increasing substitution. The microwave properties of the solid solutions are analyzed in an external magnetic field (0 ≤ H ≤ 4 kOe). As the cation Ga3+ concentration increases from x = 0.1 to 0.6, the natural ferromagnetic resonance (NFMR) frequency decreases; as the concentration increases further to x = 1.2, this frequency again increases. As the cation Ga3+ concentration increases, the NFMR line width increases, which indicates a widening of the frequency range where electromagnetic radiation is intensely absorbed. Here, the resonance curve peak amplitude changes insignificantly. The shift of the NFMR frequency in an applied magnetic field is more pronounced for samples with low cation Ga3+ concentrations. The role of diamagnetic substitution is revealed, and the prospects and advantages of Ga-substituted beryllium hexaferrite as the material absorbing high-frequency electromagnetic radiation are demonstrated.

Journal of Experimental and Theoretical Physics. 2016;123(3):461-469
pages 461-469 views

Electronic Properties of Solid

On the spectral function of carriers in the pseudogap state

Belemuk A., Barabanov A.

Аннотация

We consider the evolution of the spectral function of charge carriers for a 2D Kondo lattice depending on the parameters of the model. A self-consistent solution is obtained for the spectral function using the formalism of irreducible Green’s functions. In the low doping level regime, the behavior of the spectral function exhibits suppression of the spectral weight of carriers in the low-frequency range, which is typical of the pseudogap state.

Journal of Experimental and Theoretical Physics. 2016;123(3):470-480
pages 470-480 views

Reconstruction of the conduction band in metallic hydrogen sulfide

Kudryashov N., Kutukov A., Mazur E.

Аннотация

The theory of the normal properties of a metal generalized to the case of particular properties of an electron band with a finite width for electron–phonon systems with a varying electron density of states has been used to study the normal state of the SH3 phase of hydrogen sulfide at a pressure of 225 GPa and a temperature of 200 K. The frequency dependences of the real, ReΣ(ω), and imaginary, ImΣ(ω), parts of the selfenergy part of the Green’s function of the electron Σ(ω), as well as the electron density of states N(ε) of the Im–3m stable orthorhombic structure of SH3 hydrogen sulfide at a pressure of P = 225 GPa, which is renormalized by the strong electron–phonon coupling, have been calculated. It has been established that a part of the electron conduction band of the SH3 phase of hydrogen sulfide adjacent to the Fermi level undergoes renormalization-induced reconstruction in the form of a number of energy pockets with the widths equal to fractions of the characteristic phonon energies of the system.

Journal of Experimental and Theoretical Physics. 2016;123(3):481-488
pages 481-488 views

Phonon focusing and electron–phonon drag in semiconductor crystals with degenerate charge-carrier statistics

Kuleyev I., Kuleyev I., Bakharev S., Ustinov V.

Аннотация

We study the effect of anisotropy in elastic properties on the electron–phonon drag and thermoelectric phenomena in gapless semiconductors with degenerate charge-carrier statistics. It is shown that phonon focusing leads to a number of new effects in the drag thermopower at low temperatures, when diffusive phonon scattering from the boundaries is the predominant relaxation mechanism. We analyze the effect of phonon focusing on the dependences of the thermoelectromotive force (thermopower) in HgSe:Fe crystals on geometric parameters and the heat-flow directions relative to the crystal axes in the Knudsen regime of the phonon gas flow. The crystallographic directions that ensure the maximum and minimum values of the thermopower are determined and the role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower in HgSe:Fe crystals at low temperatures is analyzed. It is shown that the main contribution to the drag thermopower comes from slow quasi-transverse phonons in the directions of focusing in long samples.

Journal of Experimental and Theoretical Physics. 2016;123(3):489-505
pages 489-505 views

Electronic Raman scattering and the renormalization of the electron spectrum in LuB12

Ponosov Y., Streltsov S., Levchenko A., Filippov V.

Аннотация

The electronic Raman scattering in LuB12 single crystals of various isotope compositions is studied in the temperature range 10–650 K. The shape and the energy position of spectral maxima depend on the direction and magnitude of a probe wavevector, the temperature, and the excitation symmetry and remain unchanged when the isotope composition changes. Experimental spectra are compared with the spectra simulated on the basis of a calculated electronic structure. The experimental results are successfully described when the electron spectrum renormalization effects caused by electron–phonon coupling are taken into account. This confirms that the origin of the observed spectra in LuB12 is due to Raman scattering by electrons. A comparison of the calculated and experimental data makes it possible to determine the coupling constant (λep = 0.32) that gives the correct superconducting transition temperature.

Journal of Experimental and Theoretical Physics. 2016;123(3):506-510
pages 506-510 views

Effect of canted antiferromagnetic order on the electronic structure in the t–J* model within the cluster perturbation theory

Kuz’min V., Nikolaev S., Ovchinnikov S.

Аннотация

The electronic structure in the two-dimensional t–J* model with canted antiferromagnetic order in an external magnetic field has been calculated within the cluster perturbation theory. In zero external field, the evolution of the Fermi surface with n-type doping has been obtained in good agreement with experimental data on cuprate superconductors. It has been shown that the inclusion of short-range correlations can result in a nonmonotonic dependence of the spectral weight distribution at the Fermi level on the external magnetic field. In contrast to the case of electron doping, such changes in the case of hole doping can be expected at experimentally achievable fields.

Journal of Experimental and Theoretical Physics. 2016;123(3):511-519
pages 511-519 views

Statistical, Nonlinear, and Soft Matter Physics

Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

Klimachkov D., Petrosyan A.

Аннотация

Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.

Journal of Experimental and Theoretical Physics. 2016;123(3):520-539
pages 520-539 views

The evolution of the mass-transfer functions in liquid Yukawa systems

Vaulina O.

Аннотация

The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.

Journal of Experimental and Theoretical Physics. 2016;123(3):540-549
pages 540-549 views

Erratum

Erratum to: “Pais approximation for slow scattered and resonant particles”

Bruk Y., Voloshchuk A.
Journal of Experimental and Theoretical Physics. 2016;123(3):550-550
pages 550-550 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».