卷 62, 编号 5 (2018)
- 年: 2018
- 文章: 5
- URL: https://bakhtiniada.ru/1063-7729/issue/view/12032
Article
Monte Carlo Simulations of Radiative and Neutrino Transport under Astrophysical Conditions
摘要
Monte Carlo simulations are utilized to model radiative and neutrino transfer in astrophysics. An algorithm that can be used to study radiative transport in astrophysical plasma based on simulations of photon trajectories in a medium is described. Formation of the hard X-ray spectrum of the Galactic microquasar SS 433 is considered in detail as an example. Specific requirements for applying such simulations to neutrino transport in a densemedium and algorithmic differences compared to its application to photon transport are discussed.
311-325
The Spatial–Kinematic Structure of the Region of Massive Star Formation S255N on Various Scales
摘要
The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2–1), N2H+(3–2), NH3(1, 1), C18O(2–1) and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed investigation of the gas kinematics in the moleclar core on various spatial scales. There are no signs of rotation or isotropic compression on the scale of the region as whole. The largest fragments of gas (≈0.3 pc) are located near the boundary of the regions of ionized hydrogen S255 and S257. Some smaller-scale fragments are associated with protostellar clumps. The kinetic temperatures of these fragments lie in the range 10–80 K. A circumstellar torus with inner radius Rin ≈ 8000 AU and outer radius Rout ≈ 12 000 AU has been detected around the clump SMA1. The rotation profile indicates the existence of a central object with mass ≈8.5/ sin2(i) M⊙. SMA1 is resolved into two clumps, SMA1–NE and SMA1–SE, whose temperatures are≈150Kand≈25 K, respectively. To all appearances, the torus is involved in the accretion of surrounding gas onto the two protostellar clumps.
326-345
Coronal Mass Ejections in September 2017 from Monitoring of Interplanetary Scintillations with the Large Phased Array of the Lebedev Institute of Physics
摘要
Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.
346-351
The Spots and Activity of Stars in the Beehive Cluster Observed by the Kepler Space Telescope (K2)
摘要
The spottedness parameters S (the fraction of the visible surface of the star occupied by spots) characterizing the activity of 674 stars in the Beehive Cluster (age 650 Myr) are estimated, together with variations of this parameter as a function of the rotation period, Rossby number Ro and other characteristics of the stars. The activity of the stars in this cluster is lower than the activity of stars in the younger Pleiades (125 Myr). The average S value for the Beehive Cluster stars is 0.014, while Pleiades stars have the much higher average value 0.052. The activity parameters of 61 solar-type stars in the Beehive Cluster, similar Hyades stars (of about the same age), and stars in the younger Pleiades are compared. The average S value of such objects in the Beehive Cluster is 0.014± 0.008, nearly coincident with the estimate obtained for solar-type Hyades stars. The rotation periods of these objects are 9.1 ± 3.4 day, on average, in agreement with the average rotation period of the Hyades stars (8.6d). Stars with periods exceeding 3–4d are more numerous in the Beehive Cluster than in the Pleiades, and their periods have a larger range, 3–30d. The characteristic dependence with a kink at Ro (saturation) = 0.13 is not observed in the S–Rossby number diagram for the Beehive and Hyades stars, only a clump of objects with Rossby numbers Ro > 0.7. The spottedness data for the Beehive Cluster and Hyades stars are in good agreement with the S values for dwarfs with ages of 600–700 Myr. This provides evidence for the reliability of the results of gyrochronological calibrations. The data for the Beehive and Pleiades stars are used to analyze variations in the spot-forming activity for a large number of stars of the same age that are members of a single cluster. A joint consideration of the data for two clusters can be used to draw conclusions about the time evolution of the activity of stars of different masses (over a time interval of the order of 500 Myr).
352-358
Two Scenarios for the Eruption of Magnetic Flux Ropes in the Solar Atmosphere
摘要
Eruptions of material from lower to upper layers of the solar atmosphere can be divided into two classes. The first class of eruptions maintain their (usually loop-like) shapes as they increase in size (eruptive prominences), or display a sudden expansion of fairly shapeless clumps of plasma in all directions (flare sprays). The second class refers to narrow, collimated flows of plasma on various scales (spicules, surges, jets). It is obvious that the magnetic configurations in which these phenomena develop differ: for the first class they form closed structures that confine the plasma, and in the second class open structures directing flows of plasma in a particular direction, as a rule, upward. At the same time, the mechanisms initiating eruptions of both classes could be similar, or even practically identical. This mechanism could be instability of twisted magnetic tubes (flux ropes), leading to different consequences under different conditions. It is shown that the results of eruptive instability are determined by the ratio of the scales of the magnetic flux rope and the confining coronal field, and also by the configuration of the ambient magnetic field in the corona. Observations of both types of eruptions are analyzed, the conditions for their develoment are examined, and phenomenological models are proposed.
359-365
