Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 62, № 6 (2016)

Classical Problems of Linear Acoustics and Wave Theory

Features of wave generation by a source moving along a one-dimensional flexible guide lying on an elastic-inertial foundation

Erofeev V., Kolesov D., Lisenkova E.

Аннотация

A self-consistent dynamic problem is posed for a system including a one-dimensional flexible guide (a string), elastic-inertial foundation (an array of oscillators), and moving oscillating load. The effect of the foundation parameters on the dispersion characteristics (frequency, phase velocity, and group velocity as functions of the wavenumber) of transverse waves propagating along the string has been analyzed. It has been shown that taking into account the foundation inertia leads to the presence of two critical (cutoff) frequencies. Regularities of wave generation by a source moving along the string have been analyzed.

Acoustical Physics. 2016;62(6):643-650
pages 643-650 views

High-frequency wave diffraction by an impedance segment at oblique incidence

Korol’kov A., Shanin A.

Аннотация

The plane problem of high-frequency acoustic wave diffraction by a segment with impedance boundary conditions is considered. The angle of incidence of waves is assumed to be small (oblique). The paper generalizes the method previously developed by the authors for an ideal segment (with Dirichlet or Neumann boundary conditions). An expression for the directional pattern of the scattered field is derived. The optical theorem is proved for the case of the parabolic equation. The surface wave amplitude is calculated, and the results are numerically verified by the integral equation method.

Acoustical Physics. 2016;62(6):651-658
pages 651-658 views

The Young principle and integration-masked lumped sources of a diffracted field

Urusovskii I.

Аннотация

A methodologically simple modification of the Young principle is proposed for describing diffracted field formation in problems of wave diffraction by the sharp edges of screens and wedges without using Sommerfeld’s two-sheeted space. The method of determining the diffracted field constructs the derivative of the field by introducing lumped sources positioned at given scattering edges with subsequent integration of the constructed field along the directions parallel to the wave fronts of the incident plane wave.

Acoustical Physics. 2016;62(6):659-662
pages 659-662 views

Acoustic scattering on spheroidal shapes near boundaries

Miloh T.

Аннотация

A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an “ultimate” singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.

Acoustical Physics. 2016;62(6):663-671
pages 663-671 views

An extension of the transfer matrix method to analyzing acoustic resonators with gradually varying cross-sectional area

Min Q., He W., Wang Q., Tian J.

Аннотация

The transfer matrix method was used to analyze the acoustical properties of stepped acoustic resonator in the previous paper. The present paper extends the application of the transfer matrix method to analyzing acoustic resonators with gradually varying cross-sectional area. The transfer matrices and the resonant conditions are derived for acoustic resonators with four different kinds of gradually varying geometric shape: tapered, trigonometric, exponential and hyperbolic. Based on the derived transfer matrices, the acoustic properties of these resonators are derived, including the resonant frequency, phase and radiation impedance. Compared with other analytical methods based on the wave equation and boundary conditions, the transfer matrix method is simple to implement and convenient for computation.

Acoustical Physics. 2016;62(6):672-680
pages 672-680 views

Nonlinear Acoustics

Nonlinear acoustic properties of the B95 aluminum alloy and the B95/nanodiamond composite

Korobov A., Prokhorov V.

Аннотация

Research results for the nonlinear acoustic properties of the B95 polycrystalline aluminum alloy and the B95/nanodiamond composite have been described. The nonlinear properties of the alloys have been studied by the spectral method that measures the efficiency of generation of the second harmonic of a bulk acoustic wave at a frequency of 2f = 10 MHz in the field of a finite-amplitude longitudinal acoustic wave at a frequency of f = 5 MHz. The results derived by this method have been compared with the results of studies of the nonlinear acoustic properties of the test alloys using the Thurston–Brugger quasi-static method.

Acoustical Physics. 2016;62(6):681-687
pages 681-687 views

Physical Acoustics

Absorption of ultrasound waves during dynamic processes in disperse systems

Kol’tsova I., Khomutova A.

Аннотация

Measurements of ultrasound wave absorption are conducted at a frequency of 3 MHz in 3% suspensions of starch, gelatin, and lactose. It is shown that the dynamics of the additional ultrasound wave absorption coefficient in the suspensions carries information on the processes of swelling, dissolution, and the phase and structural periods occurring in the interaction of the disperse and dispersoid phases; it also reflects the influence of the temperature field on these processes.

Acoustical Physics. 2016;62(6):688-693
pages 688-693 views

X-ray topographic study of quartz cavities with a triple electrode

Kulikov A., Marchenkov N., Blagov A., Kozhemyakin K., Nasonov M., Pashkov S., Pisarevskii Y., Cherpukhina G.

Аннотация

AT-cut quartz cavities with a triple electrode have been studied. Their main advantage over cavities with an orthogonally directed electric field is that the triple electrode hinders excitation of vibrations on the first mechanical harmonic. A comparison of the parameters of different cavities shows that, in the case of their excitation on the first harmonic, the equivalent resistance of triple-electrode cavities is higher by a factor of 24, their equivalent inductance is higher by a factor of 3, and their Q factor is lower by a factor of 12 compared to the corresponding parameters of conventional cavities. When working on the third harmonic, the parameters of triple-electrode cavity are comparable with those of cavities with an orthogonally directed electric field. An X-ray topographic study of the vibrations of piezoelectric cells in triple-electrode cavities showed a pronounced vibration antinode on the third harmonic, located at the plate center, whereas the corresponding first-harmonic antinode is distorted and diffuse. The values of the Q factor of element vibrations on these harmonics differ by a factor of almost 8. Thus, the use of a triple electrode provides optimal conditions for cavity operation on the third harmonic. There is no need to use any other tools (e.g., introduce an additional resistor) to suppress the first harmonic.

Acoustical Physics. 2016;62(6):694-699
pages 694-699 views

Ocean Acoustics. Hydroacoustics

On the possibility of representing an acoustic field in shallow water as the sum of normal modes and quasimodes

Grigor’ev V., Petnikov V.

Аннотация

Using the example of a shallow-water acoustic waveguide with a homogeneous water layer of constant thickness H lying on a homogeneous fluid absorbing half-space (bottom), we obtain estimates of distance r from a source, for which it is possible to ignore the continuous spectrum for the mode description of the depth dependence of the intensity of a low-frequency sound field in the bottom layer. We have compared two discrete representations of the field using (1) the total set of normal modes and (2) the total set of normal modes and quasimodes. It is shown that in the case when there is at least one normal mode in the channel, additional allowance for quasimodes makes it possible by an order of magnitude to approximate the boundary of applicability of mode theory and on average establish it at a level of r ~ H or less. We explain the functional dependences of the contribution of the continuous spectrum to the total field on the waveguide parameters and find the conditions of its minimization. We present examples of description of the field in the bottom, where the advantage of using quasimodes at short distances is also demonstrated.

Acoustical Physics. 2016;62(6):700-716
pages 700-716 views

Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

Kuznetsov G., Lebedev O., Stepanov A.

Аннотация

We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5–12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

Acoustical Physics. 2016;62(6):717-728
pages 717-728 views

On optimal acoustic field excitation in oceanic waveguides

Smirnov I., Khil’ko A., Burdukovskaya V.

Аннотация

We propose criteria and develop methods for stable optimization when synthesizing acoustic fields in the case of their excitation by a finite set of coherent sources in oceanic waveguides. As an example, we consider methods of amplitude-phase focusing of the field of a vertical emitting array to a given point of a refractive waveguide. We show that the problem of optimal field focusing can be approximately reduced to that of focusing of the most powerful and stable wave components. We use the ray representation of the field.

Acoustical Physics. 2016;62(6):729-740
pages 729-740 views

Acoustic Ecology. Noise and Vibration

On determining the acoustic properties of main helicopter rotor models on an open test bench

Kop’ev V., Zaitsev M., Ostrikov N., Denisov S., Makashov S., Anikin V., Gromov V.

Аннотация

The paper presents the results of experimental studies on developing a technique to determine the acoustic properties of models of main helicopter rotors on an open test bench. The method of maximum length sequences is used to choose the optimum arrangement of microphones for an open test bench that would minimize the influence of parasitic echo. The results of processing the data of an acoustic experiment with a model rotor are detailed.

Acoustical Physics. 2016;62(6):741-746
pages 741-746 views

Acoustic Signal Processing. Computer Simulation

Theoretics of remote acoustic monitoring of the level and density of fluid contacting media at the interface

Skvortsov B., Solntseva A., Borminskii S., Rodionov L.

Аннотация

We present a method for monitoring the physical parameters of a medium, based on processing of an acoustic signal reflected from the studied medium. The method makes it possible to rapidly and simultaneously measure the level and density of the reflecting medium owing to acoustic sounding with pulses of different shape. We have obtained the analytic dependences relating the controlled parameters to the phase and amplitude spectra components of the reflected acoustic signal.

Acoustical Physics. 2016;62(6):747-753
pages 747-753 views

Acoustics of Living Systems. Biological Acoustics

Application of an acoustoelectronic technique to study ordered microstructured disperse systems with biological objects in a hydrogel

Anisimkin V., Pokusaev B., Skladnev D., Sorokin V., Tyupa D.

Аннотация

Using acoustoelectronic sensors not containing sensitive coatings, we studied a series of microbiological preparations: yeast cells and bacteria, as well as virus particles, immobilized in hydrogels of different concentration. The obtained measurement data on the acoustic characteristics make it possible to (1) reveal the presence of biological objects in both fluid media and agarose-based hydrogels of various concentration; (2) establish the physical mechanism that results in acoustoelectronic detection; (3) evaluate changes in the concentration of biological objects and their electric conductivity. The data confirm the possibility of applying the acoustoelectronic technique to detect microbiological objects and observe their growth in hydrogel media. We discus the limitations and drawbacks of the acoustoelectronic technique.

Acoustical Physics. 2016;62(6):754-759
pages 754-759 views

Physical Foundations of Engineering Acoustics

Sound absorption by an active resonator array near an impedance surface

Kanev N.

Аннотация

Absorption of sound waves incident on a plane surface with arbitrary impedance by a planar active resonator array consisting of monopole or dipole resonators and positioned near the surface is considered. Appropriate tuning of active resonators ensures complete absorption of sound waves incident at a fixed angle in a broad frequency band. The effect of tuning errors on the efficiency of sound absorption by the systems under study is investigated. It is shown that, for rigid surfaces, a monopole resonator array yields a higher absorption efficiency, whereas for soft surfaces, a dipole resonator array is the more efficient one.

Acoustical Physics. 2016;62(6):760-763
pages 760-763 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».