Tight risk bounds for multi-class margin classifiers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a problem of risk estimation for large-margin multi-class classifiers. We propose a novel risk bound for the multi-class classification problem. The bound involves the marginal distribution of the classifier and the Rademacher complexity of the hypothesis class. We prove that our bound is tight in the number of classes. Finally, we compare our bound with the related ones and provide a simplified version of the bound for the multi-class classification with kernel based hypotheses.

作者简介

Yu. Maximov

Skolkovo Institute of Science and Technology Skolkovo Innovation Center

编辑信件的主要联系方式.
Email: yurymaximov@iitp.ru
俄罗斯联邦, Building 3, Moscow, 143026

D. Reshetova

Predictive Modeling and Optimization Department Institute of Information Transmission Problems; Predictive Modeling and Optimization Laboratory Moscow Institute of Physics and Technology

Email: yurymaximov@iitp.ru
俄罗斯联邦, Bol’shoi Karetnyi 19/1, Moscow, 127051; Kerchenskaya ul. 1a/1, Moscow, 117303

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016