Tight risk bounds for multi-class margin classifiers
- Авторы: Maximov Y.1, Reshetova D.2,3
-
Учреждения:
- Skolkovo Institute of Science and Technology Skolkovo Innovation Center
- Predictive Modeling and Optimization Department Institute of Information Transmission Problems
- Predictive Modeling and Optimization Laboratory Moscow Institute of Physics and Technology
- Выпуск: Том 26, № 4 (2016)
- Страницы: 673-680
- Раздел: Mathematical Method in Pattern Recognition
- URL: https://bakhtiniada.ru/1054-6618/article/view/194905
- DOI: https://doi.org/10.1134/S105466181604009X
- ID: 194905
Цитировать
Аннотация
We consider a problem of risk estimation for large-margin multi-class classifiers. We propose a novel risk bound for the multi-class classification problem. The bound involves the marginal distribution of the classifier and the Rademacher complexity of the hypothesis class. We prove that our bound is tight in the number of classes. Finally, we compare our bound with the related ones and provide a simplified version of the bound for the multi-class classification with kernel based hypotheses.
Ключевые слова
Об авторах
Yu. Maximov
Skolkovo Institute of Science and Technology Skolkovo Innovation Center
Автор, ответственный за переписку.
Email: yurymaximov@iitp.ru
Россия, Building 3, Moscow, 143026
D. Reshetova
Predictive Modeling and Optimization Department Institute of Information Transmission Problems; Predictive Modeling and Optimization Laboratory Moscow Institute of Physics and Technology
Email: yurymaximov@iitp.ru
Россия, Bol’shoi Karetnyi 19/1, Moscow, 127051; Kerchenskaya ul. 1a/1, Moscow, 117303
Дополнительные файлы
