A stochastic approach for association rule extraction


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper addresses the problem of association rule extraction. To extract quantitative association rules from given sets of observations, a stochastic method is proposed. The developed method improves the reliability and interpretability of recognition models based on association rules, employs the stochastic approach to search through various combinations of sets of elements in association rules, and uses a priori information about the informativity of intervals of feature values. A system of criteria for estimating association rules is developed that can be used to automate the analysis of properties and to compare various models based on association rules when solving pattern recognition problems.

Sobre autores

A. Oliinyk

Zaporizhzhya National Technical University

Email: subbotin@zntu.edu.ua
Ucrânia, ul. Zhukovskogo 64, Zaporozhye, 69063

S. Subbotin

Zaporizhzhya National Technical University

Autor responsável pela correspondência
Email: subbotin@zntu.edu.ua
Ucrânia, ul. Zhukovskogo 64, Zaporozhye, 69063

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016