A Trainable System for Underwater Pipe Detection


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Underwater image processing is widely increased over the last decade. It is a fundamental process for a most part of underwater research applications, because of the need of data acquisition. In this paper we will propose a novel approach of pipe detection in submarine environment. The system draws much of its power from a representation that describes an object class taking into account structure and content features which are computed through the multi-scale covariance descriptor. This approach describes an object detection model by training a support vector machine classifier using a large set of positive and negative samples. We present result on pipe detection using Maris dataset. Moreover, we show how the representation affects detection performance by considering mono-scale representation using Covariance descriptor.

Авторлар туралы

F. Rekik

Computer and Embedded System Laboratory

Хат алмасуға жауапты Автор.
Email: farah.rekik@enis.tn
Тунис, Sfax, 3032

W. Ayedi

Computer and Embedded System Laboratory

Email: farah.rekik@enis.tn
Тунис, Sfax, 3032

M. Jallouli

Computer and Embedded System Laboratory

Email: farah.rekik@enis.tn
Тунис, Sfax, 3032

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018