Bi-dimensional Empirical Mode Decomposition and Nonconvex Penalty Minimization Lq (q = 0.5) Regular Sparse Representation-based Classification for Image Recognition


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper reports an innovative pattern recognition technique for fracture microstructure images based on Bi-dimensional empirical mode decomposition (BEMD) and nonconvex penalty minimization Lq (q = 0.5) regular sparse representation-based classification (NPMLq-SRC) algorithm. The detailed procedures of this work can be divided into three steps, i.e., the preprocessing stage, the feature extraction stage and the image classification stage. We test and validate the proposed method through real data from metallic alloy fracture images. The case verification results show that our proposal can obtain a much higher recognition accuracy than the conventional Back Propagation Neural Networks (BPNN for short), the L1-norm minimization sparse representation-based classification (L1-SRC) and the BEMD combined with L1-norm minimization sparse representation-based classification (BEMD+L1-SRC) methods, respectively. Specifically, the proposed BEMD+NPMLq-SRC (q = 0.5) method outperforms the BEMD+L1-SRC method by 3.33% improvement of the average recognition accuracy, and outperforms L1-SRC method by 14.06% improvement of the average recognition accuracy, respectively.

Авторлар туралы

Qing Li

College of Mechanical Engineering

Хат алмасуға жауапты Автор.
Email: suesliqing@163.com
ҚХР, Shanghai, 201620

Xia Ji

College of Mechanical Engineering

Email: suesliqing@163.com
ҚХР, Shanghai, 201620

S. Liang

College of Mechanical Engineering; George W. Woodruff School of Mechanical Engineering

Email: suesliqing@163.com
ҚХР, Shanghai, 201620; Atlanta, GA, 30332-0405

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018