Linear classifiers and selection of informative features


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, to construct classifiers for two linearly inseparable sets, the problem of minimizing the margin of incorrect classification is formulated, approaches to achieving approximate solution, and calculation estimates of the optimal value for this problem, are considered. Results of computational experiments that compare proposed approaches with SVM are presented. The problem of identifying informative features for large-dimensional diagnostic applications is analyzed and algorithms for its solution are developed.

作者简介

Yu. Zhuravlev

Dorodnicyn Computing Centre of the Russian Academy of Sciences

Email: vngrccas@mail.ru
俄罗斯联邦, Moscow, 119333

Yu. Laptin

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
乌克兰, Kiev, 03680

A. Vinogradov

Dorodnicyn Computing Centre of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vngrccas@mail.ru
俄罗斯联邦, Moscow, 119333

N. Zhurbenko

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
乌克兰, Kiev, 03680

O. Lykhovyd

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
乌克兰, Kiev, 03680

O. Berezovskyi

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
乌克兰, Kiev, 03680

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017