Clinical application of proton beam radiation therapy in the tumor's treatment


Cite item

Full Text

Abstract

Despite the rapid technological development, standard photon radiotherapy still brings a number of issues. Main problems are: 1. lack of effectiveness for a number of indications; partly due to the inability to safely deliver the effective dose to the tumors; 2. late and very late side effects of treatment caused by the unwanted dose delivered to the surrounding healthy tissue. The aim of the new methods in radiotherapy is to maximally reduce the dose to healthy tissue and to deliver the dose to the tumors as accurately as possible. Proton therapy comes closest to this goal from the all available methods. The principle ofproton radiotherapy is use of accelerated hydrogen particles - protons, which are directed to the tumors. Due to the interaction of protons with the tissue, majority of the energy is deposed at a certain depth in tissue, in the so-called Bragg peak of absorption. The dose of radiation is very precisely delineated and there is no extra dose behind the tumors it. High-precise proton therapy requires a high-end technology within the whole radiotherapy chain. Tumor has to be examined and defined using combination of CT, MRI and PET. Reproducibility of the patient position requires special fixation devices. Each individual fraction of radiation must be done with image - guidance (IGRT) technology. The benefit of protons is minimizing the dose delivery to the healthy tissue. This applies for organs near the tumors and also for integral dose of organism. Therefore; proton therapy is most appropriate in situations where we expect a significant chance of curability in patient with expected long-term survival and high risk of side effects. Typical cases for proton radiotherapy are children with a malignant disease or brain tumors (meningioma, low-grade glioma) in young cancer patients. The second group of indications is cancers that are not curable with photon radiotherapy due to their location or low sensitivity to radiation. This group includes for example cancer of the pancreas or retroperitoneal sarcoma. Treatment results for various diagnoses will be presented. Proton radiotherapy is a new option in treatment of malignant tumors that pushes the limits of radiation oncology forward, onto a higher level.

About the authors

Jiří Kubes

Proton Therapy Center

Email: info@ptc.cz
PhD, Head of Proton Therapy Proton Therapy Center Czech s.r.o., Vice-chairman of the Czech Society for radiation oncology, biology and physics 18000, Prague, Czech Republic

References

  1. Amichetti M., Amelio D., Cianchetti M. A systematic review of proton therapy in the treatment of chondrosarcoma of the skull base. Neurosurg. Rev. 2010; 33: 155-65.
  2. Johansson S., Astrom L., Sandin F. et al. Hypofractionated proton boostcombined with external beam radiotherapy for treatment of localized prostate cancer. Prostate Cancer. 2012: 2012; article ID 654861.
  3. Hoppe B.S., Flampouri S. et al. Consolidative involved-node proton therapy for stage IA-IIIB mediastinal hodgkin lymphoma: Preliminary dosimetric outcomes from a phase II study. Int. J. Radiat. Oncol. Biol. Phys. 2012; 83: 260-7.
  4. Hoppe B.S., Nichols R.C., Henderson R.H. et al. Erectile function, incontinence,and other quality of life outcomes following proton therapy for prostate cancer in men 60 years old and younger. Cancer. 2012; 118: 4619-26.
  5. Ludkvist J., Ekman M., Rehn Ericsson S. et al. Cost-effectiveness of proton radiation in the treatment of childhood edulloblastoma. Cancer. 2005; 103: 793-801.
  6. Mahadevan A., Miksad R., Goldstein M. et al. Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81: 615-22.
  7. Marucci L., Ancukiewicz M., Lane A.M. et al. Uveal melanoma recurrence after fractioned proton beam therapy: comparison of survival in patients treated with reirradiation or with enucleation. Int. J. Radiat. Oncol. Biol. Phys. 2011; 79: 842-6.
  8. Merchant T.E. Proton beam therapy in pediatric onkolo. Cancer J. 2009; 15(4): 298-305.
  9. Mosci C., Lanza F.B., Barla A. et al. Uveal melanoma recurrence after fractioned proton beam therapy: comparison of survival in patients reated with enucleation or proton beam radiotherapy. Ophthalmologica. 2012; 227: 190-6.
  10. Nakayama H., Sugahara S., Tokita M. et al. Proton beam therapy for patients with medically inoperable stage I non-small-cell lung cancer at the University of Tsukuba. Int. J. Radiat. Oncol. Biol. Phys. 2010; 78: 467-71.
  11. Nihei K., Ogino T., Onozawa M. et al. Multi-institutional Phase II study of proton beam therapy for organ-confined prostate cancer focusing on the incidence of late rectal toxicities. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81: 390-6.
  12. Sejpal S., Komaki R., Tsao A. et al. Early findings on toxicity of protonbeam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer. 2011; 117: 3004-13.
  13. Slater J.D., Yonemoto L.T., Mantik D.W. et al. Proton radiation for treatment of cancer of the oropharynx: early experience at Loma Linda University Medical Center using a concomitant boost technique. Int. J. Radiat. Oncol. Biol. Phys. 2005; 62: 494-500.
  14. Terashima K., Demizu Y., Hashimoto N. et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother. Oncol. 2012; 103: 25-31.
  15. Truong M.T., Kamat U.R., Liebsch N.J. et al. Proton radiation therapy for primary sphenoid sinus malignancies: treatment outcome and prognostic factors. Head Neck. 2009; 31: 1297-308.
  16. Wang Z., Nabhan M., Schild S.E. et al. Charged particle radiation therapy for uveal melanoma: a systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2013; 86: 18.
  17. Westover K.D., Seco J., Adams J. A. et al. Proton SBRT for medically inoperable stage I NSCLC. Thorac. Oncol. 2012; 7: 1021-5.
  18. Xiang Z.L., Erasmus J., Komaki R. et al. FDG uptake correlates with recurrenceand survival after treatment of unresectable stage III on-small cell lung cancer with high-dose proton therapy and chemotherapy. Radiat. Oncol. 2012; 28: 144.
  19. Zenda S., Kohno R., Kawashima M. et al. Proton beam therapy for unresectable malignancies of the nasal cavity and paranasal sinuses. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81: 1473-8.
  20. Zietman A.L., Desilvio M.L., Slater J.D. Comparison of conventional-dose vshigh-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. J.A.M.A. 2005; 294: 1233-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».