Возможности и перспективы применения экзогенных нуклеаз в терапии онкологических заболеваний

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данном обзоре литературы представлены актуальные сведения об онкосупрессивном действии экзогенных нуклеаз, полученных из различных источников. Экзогенные нуклеазы, такие как РНКаза А, BS-РНКаза, онконаза и ДНКаза I, способны разрушать низкомолекулярные внеклеточные ДНК и РНК, циркулирующие в плазме крови, что может существенно снизить риск метастазирования. Описана роль внеклеточных ДНК и РНК в онкогенезе, а также влияние экзогенных нуклеаз на их количество. Обсуждаются перспективы использования нуклеаз в сочетании с другими терапевтическими методами, такими как химиотерапия и лучевая терапия, для повышения их эффективности и снижения побочных эффектов. Кроме того, рассмотрены мишени и механизмы действия нуклеаз, а также возможность их применения в сочетании друг с другом и с другими терапевтическими средствами. Сделан вывод о потенциальной эффективности применения экзогенных нуклеаз в терапии онкологических заболеваний.

Об авторах

Мария Николаевна Филимонова

Казанский (Приволжский) федеральный университет

Автор, ответственный за переписку.
Email: maria.filimonova@kpfu.ru
ORCID iD: 0000-0001-8619-9687
SPIN-код: 6117-4954

доктор биологических наук, старший научный сотрудник

Россия, 420008, Казань, ул. Кремлёвская, д. 18

Рания Рамилевна Хадиуллина

Казанский (Приволжский) федеральный университет

Email: nazyrovarania@gmail.com
ORCID iD: 0000-0003-3521-5995
SPIN-код: 8458-4513

кандидат биологических наук, младший научный сотрудник

Россия, 420008, Казань, ул. Кремлёвская, д. 18

Эмиль Рафаэлевич Булатов

Казанский (Приволжский) федеральный университет

Email: chembio.kazan@gmail.com
ORCID iD: 0000-0003-2961-0032
SPIN-код: 6165-9429

PhD (Химия), ведущий научный сотрудник

Россия, 420008, Казань, ул. Кремлёвская, д. 18

Список литературы

  1. García-Olmo D., García-Olmo D.C. Functionality of Circulating DNA. The Hypothesis of Genometastasis // Ann NY Acad Sci. 2001. Vol. 945. P. 265–275. doi: 10.1111/j.1749-6632.2001.tb03895.x
  2. García-Olmo D.C., García-Olmo D. Biologicall role of cell — free nucleic acids in cancer. The Theory of Genometastasis // Crit Rev Oncog. 2013. Vol. 18, N 1-2. P. 153–161. doi: 10.1615/critrevoncog.v18.i1-2.90
  3. Carreira P.E., Richardson S.R., Faulkner G.J. L1 retrotransposons, cancer stem cells and oncogenesis // FEBS J. 2014. Vol. 281, N 1. P. 63–73. doi: 10.1111/febs.12601
  4. Fleischhacker M., Schmidt B. Circulating nucleic acids (CNAs) and cancer — a survey // Biochim Biophys Acta. 2007. Vol. 1775, N 1. P. 181–232. doi: 10.1016/j.bbcan.2006.10.001
  5. Ryan B.M., Lefort F., McManus R., et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up // Gut. 2003. Vol. 52, N 1. P. 101–118. doi: 10.1136/gut.52.1.101
  6. Dong-Dong L., Xi-Ran Z. Plasma 249Ser p53 mutation in patients with hepatocellular carcinoma residing in a high risk area // J Cell Mol Med. 2003. Vol. 7, N 1. P. 89–92. doi: 10.1111/j.1582-4934.2003.tb00207.x
  7. Deligezer U., Yaman F., Erten N., et al. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients // Clinica Chimica Acta. 2003. Vol. 335, N 1-2. P. 89–94. doi: 10.1016/s0009-8981(03)00279-1
  8. Holdenrieder S., Stieber P. Therapy control in oncology by circulating nucleosomes // Ann NY Acad Scie. 2004. Vol. 1022. P. 211–216. doi: 10.1196/annals.1318.032
  9. Trejo-Becerril C., Perez-Cardenas E., Taja-Chayeb L., et al. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model // PLoS ONE. 2012. Vol. 7, N 12. P. e52754. doi: 10.1371/journal.pone.0052754
  10. Васильева И.Н., Беспалов В.Г. Роль внеклеточной ДНК в возникновении развитии злокачественных опухолей и возможности ее использования в диагностике и лечении онкологических заболеваний // Вопросы онкологии. 2013. Т. 59, № 6. С. 673–681. EDN: RTURKV
  11. Watson K., Gooderham N.J., Davies D.S., et al. Nucleosomes bind to cell surface proteoglycans // J Biol Chem. 1999. Vol. 274, N 31. P. 21707–21713. doi: 10.1074/jbc.274.31.21707
  12. Gaiffe E., Prétet J.L., Launay S., et al. Apoptotic HPV positive cancer cells exhibit transforming properties // PLoS ONE. 2012. Vol. 7, N 5. P. e36766. doi: 10.1371/journal.pone.0036766
  13. Gahan P., Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger // Cell Biochem Funct. 2010. Vol. 28, N 7. P. 529–538. doi: 10.1002/cbf.1690
  14. Dhondt B., Rousseau Q., De Wever O., et al. Function of extracellular vesicle-associated miRNAs in metastasis // Cell Tissue Res. 2016. Vol. 365, N 3. P. 621–641. doi: 10.1007/s00441-016-2430-x
  15. Kogure T., Lin W., Yan I., et al. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth // Hepatology. 2011. Vol. 54, N 4. P. 1237–1248. doi: 10.1002/hep.24504
  16. Kosaka N., Iguchi H., Hagiwara K., et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis // J Biol Chem. 2013. Vol. 288, N 15. P. 10849–10859. doi: 10.1074/jbc.M112.446831
  17. Iguchi H., Fong N., Ochiya T. Secretory microRNAs as a versatile communication tool // Commun Integr Biol. 2010. Vol. 3, N 5. P. 478–481. doi: 10.4161/cib.3.5.12693
  18. Savelyeva A., Baryakin D., Chikova E., et al. Vesicular and extra-vesicular RNAs of human blood plasma // Adv Exp Med Biol. 2016. Vol. 924. P. 117–119. doi: 10.1007/978-3-319-42044-8_23
  19. Kosaka N., Iguchi H., Yoshioka Y., et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells // J Biol Chem. 2010. Vol. 285, N 23. P. 17442–17452. doi: 10.1074/jbc.M110.107821
  20. Volinia S., Calin G.A., Liu C.G., et al. A microRNAs expression signature of human solid tumors defines cancer gene targets // Proc Natl Acad Sci USA. 2006. Vol. 103, N 7. P. 2257–2261. doi: 10.1073/pnas.0510565103
  21. Ardelt W., Ardelt B., Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy // Eur J Pharmacol. 2009. Vol. 625, N 1-3. P. 181–189. doi: 10.1016/j.ejphar.2009.06.067
  22. Mironova N., Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases // Frontiers in Pharm. 2019. Vol. 10. doi: 10.3389/fphar.2019.01019
  23. Patutina O., Miroshnichenko S., Mironova N., et al. Catalytic Knockdown of miR-21 by Artificial Ribonuclease: Biological Performance in Tumor Model // Frontiers in Pharm. 2019. Vol. 10. doi: 10.3389/fphar.2019.00879
  24. Vickers K., Palmisano B., Shoucri B., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins // Nat Cell Biol. 2011. Vol. 13, N 4. P. 423–433. doi: 10.1038/ncb2210
  25. Castro J., Ribó M., Vilanova M., et al. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents // Pharmaceutics. 2021. Vol. 13, N 1. P. 82–99. doi: 10.3390/pharmaceutics13010082
  26. Ledoux L. Action of ribonuclease on certain ascites tumours // Nature. 1955. Vol. 175, N 4449. P. 258–259. doi: 10.1038/175258b0
  27. Soucek J., Pouckova P., Matousek J., et al. Antitumor action of bovine seminal ribonuclease // Neoplasma. 1996. Vol. 43, N 5. P. 335–340.
  28. Costanzi J., Sidransky D., Navon A., et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase // Cancer Invest. 2005. Vol. 23, N 7. P. 643–650. doi: 10.1080/07357900500283143
  29. Roiz L., Smirnoff P., Bar-Eli M., et al. ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics // Cancer. 2006. Vol. 106, N 10. P. 2295–2208. doi: 10.1002/cncr.21878
  30. Ilinskaya O.N., Zelenikhin P.V., Petrushanko I.Y., et al. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response // Biochem Biophys Res Commun. 2007. Vol. 361, N 4. P. 1000–1005. doi: 10.1016/j.bbrc.2007.07.143
  31. Mohamed I.S.E., Sen’kova A.V., Markov O.V., et al. Bovine Pancreatic RNase A: An Insight into the Mechanism of Antitumor Activity In Vitro and In Vivo // Pharmaceutics. 2022. Vol. 14, N 6. P. 1173. doi: 10.3390/pharmaceutics14061173
  32. Mironova N., Patutina O., Brenner E., et al. MicroRNA drop in the bloodstream and microRNA boost in the tumour caused by treatment with ribonuclease A leads to an attenuation of tumour malignancy // PLoS One. 2013. Vol. 8, N 12. P. e83482. doi: 10.1371/journal.pone.0083482
  33. Kotchetkov R., Cinatl J., Krivtchik A.A., et al. Selective activity of BS-RNase against anaplastic thyroid cancer // Anticancer Res. 2001. Vol. 21, N 2А. P. 1035–1042.
  34. Mikulski S., Costanzi J., Vogelzang N., et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma // J Clin Oncol. 2002. Vol. 20, N 1. P. 274–281. doi: 10.1200/JCO.2002.20.1.274
  35. Покровский В.С., Трещалина Е.М., Андронова Н.В., Деев С.М. Рибонуклеазы с антипролиферативной активностью: молекулярно-биологические и биохимические свойства // Клиническая онкогематология. 2016. Т. 9, № 2. С. 130–137. doi: 10.21320/2500-2139-2016-9-2-130-137
  36. Kanwar S.S., Kumar R. Ribonuclease as Anticancer Therapeutics // Enz Eng. 2017. Vol. 6, N 1. P. 162. doi: 10.4172/2329-6674.1000162
  37. Grabarek J., Ardelt B., Du L., et al. Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase) // Exp Cell Res. 2002. Vol. 278, N 1. P. 61–71. doi: 10.1006/excr.2002.5568
  38. Ita M., Halicka H.D., Tanaka T., et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines // Cancer Biol Ther. 2008. Vol. 7, N 7. P. 1104–1108. doi: 10.4161/cbt.7.7.6172
  39. Tsai S.Y., Ardelt B., Hsieh T.C., et al. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB // Int J Oncol. 2004. Vol. 25, N 6. P. 1745–1752. doi: 10.3892/ijo.25.6.1745
  40. Turcotte R., Lavis L., Raines R. Onconase cytotoxicity relies on the distribution of its positive charge // FEBS J. 2009. Vol. 276, N 14. P. 3846–3857. doi: 10.1111/j.1742-4658.2009.07098.x
  41. Lee I., Kalota A., Gewirtz A.M., et al. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice // Anticancer Res. 2007. Vol. 27, N 1A. P. 299–307.
  42. Lee I., Lee Y.H., Mikulski S.M., et al. Effect of Onconase ± Tamoxifen on ASPC-1 Human Pancreatic Tumors in Nude Mice. In: Dunn J.F., Swartz H.M., editors. Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol. 530. Boston : Springer. doi: 10.1007/978-1-4615-0075-9_18
  43. Mikulski S., Ardelt W., Shogen K., et al. Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos // J Natl Cancer Inst. 1990. Vol. 82, N 2. P. 151–153. doi: 10.1093/jnci/82.2.151-a
  44. Mitkevich V.A., Petrushanko I.Y., Spirin P.V., et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes // Cell Cycle. 2011. Vol. 10, N 23. P. 4090–4097. doi: 10.4161/cc.10.23.18210
  45. Mironova N.L., Petrushanko I.Y., Patutina O.A., et al. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells // Cell Cycle. 2013. Vol. 12, N 13. P. 2120–2131. doi: 10.4161/cc.25164
  46. Edelweiss E., Balandin T., Ivanova J., et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells // PLoS ONE. 2008. Vol. 3, N 6. P. e2434. doi: 10.1371/journal.pone.0002434
  47. Alcazar-Leyva S., Ceron E., Masso F., Montano L.F., et al. Incubation with DNase I inhibits tumor cell proliferation // Med Sci Monit. 2009. Vol. 15, N 2. P. 51–55.
  48. Алексеева Л.А., Патутина О.А., Сенькова А.В., и др. Подавление инвазивных свойств меланомы мыши под действием бычьей панкреатической ДНКазы I in vitro и in vivo // Молекулярная биология. 2017. Т. 51, № 4. С. 637–646. doi: 10.7868/S0026898417040024
  49. Sugihara S., Yamamoto T., Tanaka H., et al. Deoxyribonuclease treatment prevents blood-borne liver metastasis of cutaneously transplanted tumour cells in mice // Br J Cancer. 1993. Vol. 67, N 1. P. 66–70. doi: 10.1038/bjc.1993.10
  50. Патент РФ № 2269356 C2/ 10.02.2006. Генкин Д.Д., Тец В.В., Тец Г.В. Способ лечения онкологических заболеваний. EDN: IOIUYR
  51. Rosner K. DNase1: a new personalized therapy for cancer // Expert Rev Anticancer Ther. 2011. Vol. 11, N 7. P. 981–984. doi: 10.1586/era.11.90
  52. Кюне М.Ф. Влияние бактериальных нуклеаз на асцитные клетки карциномы Эрлиха в опытах in vitro. Автореферат дис. … кандидат биол. наук. Казань, 1966. EDN: ZMCRRV
  53. Куриненко Б.М., Беляева М.И., Черепнева И.Е., и др. Проницаемость нуклеазы, связанной с декстраном, через сосудистый барьер и оболочку опухолевых клеток // Вопросы онкологии. 1977. Т. 23, № 5. С. 86–90.
  54. Габдуллина Г.К. Действие нуклеазы Serratia marcescesn на клетки и рост асцитной опухоли Эрлиха. Автореферат дис. … кандидат биол. наук. Киев, 1980.
  55. Лещинская И., Балабан Н., Егорова Г., и др. Выделение и характеристика высокоочищенного препарата нуклеазы Serratia marcescens // Биохимия. 1974. Т. 46, № 9. С. 95–100.
  56. Bracale A., Castaldi F., Nitsch L., et al. A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action // Eur J Biochm. 2003. Vol. 270, N 9. P. 1980–1987. doi: 10.1046/j.1432-1033.2003.03567.x
  57. Saxena S.K., Sirdeshmukh R., Ardelt W., et al. Entry into cells and selective degradation of tRNA by a cytotoxic member of the RNase A family // J Biol Chem. 2002. Vol. 277, N 17. P. 15142–15146. doi: 10.1074/jbc.M108115200
  58. Saxena A., Saxena S.K., Shogen K. Effect of Onconase on doublestranded RNA in vitro // Anticancer Res. 2009. Vol. 29, N 4. P. 1067–1071.
  59. Ardelt B., Ardelt W., Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi) // Cell Cycle. 2003. Vol. 2, N 1. P. 22–24. doi: 10.4161/cc.2.1.232
  60. Marinov I., Soucek J. Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines // Neoplasma. 2000. Vol. 47, N 5. P. 294–298.
  61. Spalletti-Cernia D., Sorrentino R., Di Gaetano S., et al. Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis // J Clin Endocrinol Metab. 2003. Vol. 88, N 6. P. 2900–2907. doi: 10.1210/jc.2002-020373
  62. Mitkevich V.A., Tchurikov N.A., Zelenikhin P.V., et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs // FEBS J. 2010. Vol. 277, N 1. P. 186–196. doi: 10.1111/j.1742-4658.2009.07471.x
  63. Makarov A., Kolchinski A., Ilinskaya O. Binase and other microbial RNases as potential anticancer agents // BioEssays. 2008. Vol. 30, N 8. P. 789–790. doi: 10.1002/bies.20789
  64. Ilinskaya O., Decker K., Koschinski A., et al. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current // Toxicology. 2001. Vol. 156, N 2-3. P. 101–107. doi: 10.1016/s0300-483x(00)00335-8
  65. Schwartz B., Shoseyov O., Vladislava O., et al. ACTIBIND, a T2 RNase, Competes with Angiogenin and Inhibits Human Melanoma Growth, Angiogenesis, and Metastasis // Cancer Res. 2007. Vol. 67, N 11. P. 5258–5266. doi: 10.1158/0008-5472.CAN-07-0129
  66. Alekseeva L., Mironova N., Brenner E., et al. Alteration of the exDNA profile in blood serum of LLC-bearing mice under the decrease of tumour invasion potential by bovine pancreatic DNase I treatment // PLoS ONE. 2017. Vol. 12, N 2. P. e0171988. doi: 10.1371/journal.pone.0171988
  67. Wen F., Shen A., Choi A., et al. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis // Cancer Res. 2013. Vol. 73, N 14. P. 4256–4266. doi: 10.1158/0008-5472.CAN-12-3287
  68. Alekseeva L., Sen’kova A., Zenkova M., et al. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models // Mol Ther Nucleic Acids. 2020. Vol. 5, N 20. P. 50–61. doi: 10.1016/j.omtn.2020.01.035
  69. Jianga Z., Penga Z., Liua X., et al. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells // Oncoimmunology. 2022. Vol. 11, N 1. P. 2052418. doi: 10.1080/2162402X.2022.2052418
  70. Demkow U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis // Cancers. 2021. Vol. 13, N 17. P. 4495–4512. doi: 10.3390/cancers13174495
  71. Sounbuli K., Mironova N., Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies // Int J Mol Sci. 2022. Vol. 23, N 24. P. 15827. doi: 10.3390/ijms232415827
  72. Patutina O.A., Mironova N.L., Ryabchikova E.I., et al. Tumoricidal activity of RNase A and DNase I // Acta Naturae. 2010. Vol. 2, N 1. P. 88–94.
  73. Mikulski S., Viera A., Shogen K. In vitro synergism between a novel ambhibian oocytic ribonuclease (ONCONASE) and tamoxifen, lovastatin and cisplatin in human OVCAR-3 ovarian carcinoma cell line // Int J Oncol. 1992. Vol. 1, N 7. P. 779–785.
  74. Mikulski S., Viera A., Ardelt W., et al. Tamoxifen and trifluroperazine(Stelazine) potentiates cytostatic/ cytotoxic effects of P-30 protein, a novel protein possessing antitumor activity // Cell Tissue Kinet. 1990. Vol. 23, N 3. P. 237–246. doi: 10.1111/j.1365-2184.1990.tb01119.x
  75. Rybak S.M., Pearson J., Fogler W., et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with ONCONASE an antitumor ribonuclease // J Natl Cancer Inst. 1996. Vol. 88, N 11. P. 747–753. doi: 10.1093/jnci/88.11.747
  76. Lee J., Raines R. Ribonucleases as Novel Chemotherapeutics: The Ranpirnase Example // BioDrugs. 2008. Vol. 22, N 1. P. 53–58. doi: 10.2165/00063030-200822010-00006
  77. Lee I., Kim D.H., Sunar U., et al. The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer // In Vivo. 2007. Vol. 21, N 5. P. 721–728.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».