FUNCTIONALIZATION OF CARBON NANOPARTICLES WITH ANTI-IGE APTAMER
- Authors: Rayev M.B.1,2, Kropaneva M.D.1, Khramtsov P.V.1,2
-
Affiliations:
- Perm State National Research University
- Institute of Ecology and Genetics of Microorganisms UrB RAS
- Issue: Vol 20, No 2 (2017)
- Pages: 207-211
- Section: Articles
- URL: https://bakhtiniada.ru/1028-7221/article/view/119676
- ID: 119676
Cite item
Full Text
Abstract
About the authors
M. B. Rayev
Perm State National Research University; Institute of Ecology and Genetics of Microorganisms UrB RAS
Author for correspondence.
Russian Federation
M. D. Kropaneva
Perm State National Research UniversityRussian Federation
P. V. Khramtsov
Perm State National Research University; Institute of Ecology and Genetics of Microorganisms UrB RASRussian Federation
References
- Bahadir, E.B., Sezginturk, M.K. (2016) Lateral flow assays: Principles, designs and labels, TrAC - Trends in Analytical Chemistry, http://dx.doi.org/10.1016/j. trac.2016.06.006.
- Huang, X., Aguilar, Z.P., Xu, H., Lai, W., Xiong, Y. (2015) Membrane-based lateral flow immunochro- matographic strip with nanoparticles as reporters for detection: A review, Biosensors and Bioelectron-ics, http://dx.doi.org/10.1016/j.bios.2015.08.032.
- Bayda, S., Hadla, M., Palazzolo, S. et al. (2017) Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy, Journal of Controlled Release, http://dx.doi.org/10.1016/j.jconrel.2017.01.022.
- Misra, S.K., Srivastava, I., Tripathi, I. et al. (2017) Macromolecularly caged carbon nanoparticles for intracellular trafficking via switchable photolumi-nescence, Journal of the American Chemical Society, http://dx.doi.org/10.1021/jacs.6b11595.
- Lee, H.- J., Sanetuntikul, J., Choi, E.- S. et al. (2015) Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis, International Journal of Nanomedicine, http://dx.doi.org/10.2147/IJN.S7312.
- Sadhasivam, S., Savitha, S., Wu, C.-J., Lin, F.-H., Stobinski, L. (2015) Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells, International Journal of Pharmaceutics, http://dx.doi.org/10.1016/j. ijpharm.2015.01.029.
- Li, X., Ding, J., Wang, X., Wei, K., Weng, J., Wang, J. (2014) Onepot synthesis and functionalisation of Fe2O 3@C-NH2 nanoparticles for imaging and therapy, IET Nanobiotechnology, http://dx.doi. org/10.1049/iet-nbt.2012.0015.
- Zlateski, V., Fuhrer, R., Koehler, F.M. et al. (2014) Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets, Bioconjugate Chemistry, http://dx.doi.org/10.1021/ bc400476y.
- Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coro-nado, M.J. et al. (2008) Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues, Annals of Botany, http:// dx.doi.org/10.1093/aob/mcm283.
- Sengupta, A., Mezencev, R., McDonald, J.F., Prausnitz, M.R. (2015) Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles, Nano-medicine, http://dx.doi.org/10.2217/nnm.15.27.
- Li, F.- R., Li, Q., Zhou, H.- X., Qi, H., Deng, C.- Y. (2013) Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanopar-ticle enriched assay and nested-RT-PCR, Nano-medicine: Nanotechnology, Biology, and Medicine, http://dx.doi.org/10.1016/j.nano.2013.03.002.
- Weber, W., Lienhart, C., Daoud-El Baba, M. et al. (2009) Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles, Journal of Biotechnology, http://dx.doi. org/10.1016/j.jbiotec.2009.02.023.
- Herrmann, I.K., Beck-Schimmer, B., Schumacher, C.M. et al. (2016) In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short-and long-term exposure scenarios, Nanomedicine, http://dx.doi.org/10.2217/nnm.16.22.
- Herrmann, I.K., Urner, M., Hasler, M. et al. (2011) Iron core/shell nanoparticles as magnetic drug carriers: possible interactions with the vascular compartment, Nanomedicine, http://dx.doi.org/10.2217/ nnm.11.33.
- Maximilien, J., Beyazit, S., Rossi, C., Haupt, K., Tse Sum Bui, B. (2016) Nanoparticles in biomedical applications, Bioanalytical Reviews, http://dx.doi. org/10.1007/11663_2015_12.
- Zhou, J., Rossi, J., (2017) Aptamers as targeted therapeutics: Current potential and challenges, Nature Reviews Drug Discovery, http://dx.doi.org/10.1038/ nrd.2016.199.
- Nezlin, R. (2016) Use of aptamers in immunoassays, Molecular Immunology, http://dx.doi.org/10.1016/j. molimm.2015.12.009.
- Davydova, A., Vorobjeva, M., Pyshnyi, D. et al. (2016) Aptamers against pathogenic microorganisms, Critical Reviews in Microbiology, http:// dx.doi.org/10.3109/1040841X.2015.1070115.
- Lin, X., Cui, L., Huang, Y. (2014) Carbon nano-particle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification, Chemical Communications, http://dx.doi. org/10.1039/c4cc02184c.
- Duan, N., Gong, W., Wang, Z., Wu, S. (2016) An aptasensor based on fluorescence resonance energy transfer for multiplexed pathogenic bacteria determination, Analytical Methods, http://dx.doi. org/10.1039/c5ay02608c.
- Raev, M.B., Khramtsov, P.V., Bochkova, M.S. (2015) Investigation into size distribution of carbon nanoparticles covalently functionalized with proteins, Nanotechnologies in Russia, http://dx.doi. org/10.1134/S1995078015010152.
- Wiegand, T.W., Williams, P.B., Dreskin, S.C. et al. // J Immunol. 1996. N157. P. 221-230.
- He, J.-L., Wu, Z.-S., Zhang, S.-B., Shen, G.-L., Yu, R.-Q. (2009) Novel fluorescence enhancement IgE assay using a DNA aptamer, Analyst, http://dx.doi. org/10.1039/b812450g.
- Gokulrangan, G., Unruh, J.R., Holub, D.F. et al. (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy, Analytical Chemistry, http://dx.doi.org/10.1021/ac0483926.
- Jiang, P., He, M., Shen, L., Shi, A., Liu, Z. (2017) A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from up-conversion nanoparticles to carbon nanoparticles, Sensors and Actuators, B: Chemical, http://dx.doi. org/10.1016/j.snb.2016.08.005.
Supplementary files

