Recognition of strong earthquake–prone areas with a single learning class
- Autores: Gvishiani A.D.1,2, Agayan S.M.1, Dzeboev B.A.1,3, Belov I.O.1
-
Afiliações:
- Geophysical Center of the Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth
- Geophysical Institute, Vladikavkaz Scientific Center
- Edição: Volume 474, Nº 1 (2017)
- Páginas: 546-551
- Seção: Geochemistry
- URL: https://bakhtiniada.ru/1028-334X/article/view/189891
- DOI: https://doi.org/10.1134/S1028334X17050038
- ID: 189891
Citar
Resumo
This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one “pure” high-seismic class. The new algorithm operates in the space of absolute values of the geological–geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with М ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.
Sobre autores
A. Gvishiani
Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth
Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296; Moscow, 123810
S. Agayan
Geophysical Center of the Russian Academy of Sciences
Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296
B. Dzeboev
Geophysical Center of the Russian Academy of Sciences; Geophysical Institute, Vladikavkaz Scientific Center
Autor responsável pela correspondência
Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296; Vladikavkaz, 362008
I. Belov
Geophysical Center of the Russian Academy of Sciences
Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296
Arquivos suplementares
