Recognition of strong earthquake–prone areas with a single learning class


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one “pure” high-seismic class. The new algorithm operates in the space of absolute values of the geological–geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with М ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.

Sobre autores

A. Gvishiani

Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth

Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296; Moscow, 123810

S. Agayan

Geophysical Center of the Russian Academy of Sciences

Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296

B. Dzeboev

Geophysical Center of the Russian Academy of Sciences; Geophysical Institute, Vladikavkaz Scientific Center

Autor responsável pela correspondência
Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296; Vladikavkaz, 362008

I. Belov

Geophysical Center of the Russian Academy of Sciences

Email: b.dzeboev@gcras.ru
Rússia, Moscow, 119296

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017