Топологические особенности в агрегации фуллерена С60 в матрице изотактического полипропилена

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основании данных малоуглового рассеяния нейтронов от нанокомпозита, составленного из фуллерена C60 (16.5 мас. %) в матрице изотактического полипропилена, получена информация о кластеризации наночастиц C60 и определены их геометрические параметры и размерность. В настоящей работе предложена интерпретация агрегации частиц со свойствами поверхностного фрактала в диапазоне размеров до 80 нм, наблюдаемой в эксперименте по малоугловому рассеянию нейтронов. На основании известных теорий о дефектной структуре молекулы фуллерена C60 в неевклидовых метриках, в частности, дисклинациях и монополе в двумерном сферическом пространстве Геделя, мы формулируем решеточную версию действия модели монопольного газа, в рамках которой методом Монте-Карло на решетке с использованием абелевой проекции оцениваем энергии монопольных токов при различных концентрациях монополей. В рамках предлагаемой модели можно вычислить фрактальные свойства наночастиц фуллерена C60 в полимерном композите, а также интерпретировать эволюцию дисклинаций.

Полный текст

Доступ закрыт

Об авторах

Л. В. Ельникова

Национальный исследовательский центр “Курчатовский институт”; Юго-западный государственный университет

Автор, ответственный за переписку.
Email: elnikova@itep.ru
Россия, Москва, 117218; Курск, 305040

А. Н. Озерин

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: elnikova@itep.ru
Россия, Москва, 117393

В. Г. Шевченко

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: shev@ispm.ru
Россия, Москва, 117393

П. М. Недорезова

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Email: elnikova@itep.ru
Россия, Москва, 119991

О. М. Палазник

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Email: elnikova@itep.ru
Россия, Москва, 119991

А. Т. Пономаренко

Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН

Email: elnikova@itep.ru
Россия, Москва, 117393

В. В. Ской

Объединенный институт ядерных исследований; Московский физико-технический институт (национальный исследовательский университет)

Email: elnikova@itep.ru
Россия, Дубна, 141980; Долгопрудный, 141701

А. И. Куклин

Объединенный институт ядерных исследований; Московский физико-технический институт (национальный исследовательский университет)

Email: alexander.iw.kuklin@gmail.com
Россия, Дубна, 141980; Долгопрудный, 141701

Список литературы

  1. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications, San Diego, California: Academic Press, 1996. 965 p.
  2. Elnikova L.V., Ozerin A.N., Shevchenko V.G., Nedorezova P.M., Ponomarenko A.T., Skoi V.V., Kuklin A.I. // Fullerenes, Nanotubes and Carbon Nanostructures. 2021. V. 29. Iss. 10. P. 783. https://doi.org/10.1080/1536383X.2021.1896496
  3. Polshchikov S.V., Nedorezova P.M., Komkova O.M., Klyamkina A.N., Shchegolikhin A.N., Krasheninnikov V.G., Aladysheva A.M., Shevchenko V.G., Muradyan V.E. // Nanotechnologies in Russia. 2014. V. 9. № 3–4. P. 175. https://doi.org/10.1134/S1995078014020128
  4. Shevchenko V.G., Polshchikov S.V., Nedorezova P.M., Klyamkina A.N., Aladyshev A.M., Chvalun S.N. // Polymer Composites. 2015. V. 36. Iss. 6. P. 1006. https://doi.org/10.1002/pc.23447
  5. Török G., Lebedev V.T., Cser L. // Phys. Solid State. 2002. V. 44. № 3. P. 572.
  6. Aksenov V.L., Tropin T.V., Avdeev M.V., Priezzhev V.B., Schmelzer J.W.P. // Phys. Particles Nuclei. 2005. V. 36. № 1. P. 52.
  7. Avdeev M.V., Khokhryakov A.A., Tropin T.V., Andrievsky G.V., Klochkov V.K., Derevyanchenko L.I., Rosta L., Garamus V.M., Priezzhev V.B., Korobov M.V., Aksenov V.L. // Langmuir. 2004. V. 20. P. 4363. https://doi.org/10.1021/la0361969
  8. Bokare A.D., Patnaik A. // J. Chem. Phys. 2003. V. 119. № 8. P. 4529. https://doi.org/10.1063/1.1594177
  9. Voronin D.P., Buchelnikov A.S., Kostjukov V.V., Khrapatiy S.V., Wyrzykowski D., Piosik J., Prylutskyy Yu I., Ritter U., Evstigneev M.P. // J. Chem. Phys. 2014. V. 140. P. 104909. https://doi.org/10.1063/1.4867902
  10. Peidys D.A., Mosunov A.A., Mykhina Yu.V., Prylutskyy Yu.I., Evstigneev M.P. // Chem. Phys. Lett. 2020. V. 742. P. 137161. https://doi.org/10.1016/j.cplett.2020.137161
  11. Eletskii A.V., Okun M.V., Smirnov B.M. // Physica Scripta. 1997. V. 55. P. 363.
  12. Безмельницын В.Н., Елецкий А.В., Окунь М.В. // УФН. 1998. Т. 168. № 11. С. 1195. https://doi.org/10.3367/UFNr.0168.199811b.1195
  13. Liu H., Lin Zh., Zhigilei L.V., Reinke P. // J. Phys. Chem. C. 2008. V. 112. P. 4687. https://doi.org/10.1021/jp0775597
  14. Sundqvist B. // Adv. Phys. 1999. V. 48. № 1. P. 1. http://dx.doi.org/10.1080/000187399243464
  15. Garcia G.Q., Cavalcante E., de M. Carvalho A.M., Furtado C. // Eur. Phys. J. Plus. 2017. V. 132. P. 183. https://doi.org/10.1140/epjp/i2017-11457-1
  16. Kochetov E.A., Osipov V.A. // J. Phys. A: Math. Gen. 1999. V. 32. P. 1961.
  17. Pudlak M., Pincak R., Osipov V.A. // Phys. Rev. A. 2007. V. 75. P. 065201. https://doi.org/10.1103/PhysRevA.75.065201
  18. Pudlak M., Pincak R., Osipov V.A. // Phys. Rev. A. 2006. V. 74. P. 235435.
  19. Chancey C.C., O’Brien M.C.M. The Jahn-Teller Effect in С60 and Other Icosahedral Complexes. New Jersey, Prinseton: Univ. Press, 1997. 204 p.
  20. Кузьмин А.В. Структурные аспекты эффекта Яна-Теллера в кристаллах анионных комплексов фуллеренов и фталоцианинов: Дис. кандидата ф.-м.н.: 01.04.07. Черноголовка, 2018. 170 с.
  21. González J., Guinea F., Vozmediano M.A.H. // Nucl. Phys. B. 1993. V. 406. P. 771.
  22. Gonzalez J., Guinea F., Vozmediano M.A.H. // Phys. Rev. Lett. 1992. V. 69. P. 172.
  23. Vozmediano M.A.H., de Juan F., Cortijo A. // J. Phys.: Conf. Ser. 2008. V. 129. P. 012001.
  24. Kroto H. // Rev. Mod. Phys. 1997. V. 69. P. 703.
  25. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. // Nature. 1985. V. 318. P. 162.
  26. Cavalcante E., Carvalho J., Furtado C. // Eur. Phys. J. Plus. 2016. V. 131. P. 288. https://doi.org/10.1140/epjp/i2016-16288-x
  27. Катанаев М.О. // УФН. 2005. Т. 175. № 7. С. 705. https://doi.org/10.3367/UFNr.0175.200507b.0705
  28. Кадич А., Эделен Д. Калибровочная теория дислокаций и дисклинаций. М.: Мир, 1987. 166 с.
  29. Soloviev A.G., Solovjeva T.M., Ivankov O.I., Soloviov D.V., Rogachev A.V., Kuklin A.I. // J. Phys.: Conf. Ser. 2017. V. 848. P. 012020. https://doi.org/10.1088.1742-6596.848.1.012020
  30. Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D., Konarev P.V., Svergun D.I. // J. Appl. Crystallogr. 2012. V. 45. P. 342. https://doi.org/10.1107/S0021889812007662
  31. Поляков А.М. Калибровочные поля и струны. Черноголовка: ИТФ им. Л.Д. Ландау, 1995. 308 с.
  32. Монастырский М.И. Топология калибровочных полей и конденсированных сред. М.: ПАИМС, 1995. 478 с.
  33. Kolesnikov D.V., Osipov V.A. // Europ. Phys. J. B. 2006. V. 49. P. 465. https://doi.org/10.1140/epjb/e2006-00087-y
  34. Frank F.C. // Phil. Mag. 1951. V. 42. № 331. P. 809.
  35. Zhan B.L., Wang C.Z., Chan C.T., Ho K.M. // Phys. Rev. B. 1993. V. 48. № 15. P. 11381.
  36. Поликарпов М.И. // УФН. 1995. Т. 165. № 6. С. 627.
  37. Chernodub M.N., Gubarev F.V. // JETP Lett. 1995. V. 62. № 2. P. 100.
  38. ’t Hooft G. // Nucl. Phys. B. 1981. V. 190. P. 455.
  39. Kronfeld A.S., Schierholz G., Wiese U.-J. // Nucl. Phys. B. 1987. V. 293. P. 461.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Экспериментальные кривые интенсивности МУРН I(Q) на образце ИПП-С60 с содержанием частиц 16.5 мас. % и в матице ИПП (на вставке) (а). Кривые интенсивности МУРН lgI(Q) (б), сплошной линией обозначена регуляризованная кривая Ireg(Q) [2], фрактальная размерность частиц ds = 6 — |k| = 2.9.

Скачать (101KB)
3. Рис. 2. Функции распределения частиц по объему для образца c 16.5 мас. % фуллерена, вычисленные по кривым рассеяния в приближении полидисперсной системы сферических частиц радиуса R. Тонкие и толстые линии — расчетные и сглаженные кривые соответственно.

Скачать (54KB)
4. Рис. 3. Температурная зависимость средней энергии монопольных токов при концентрации наполнителя: а — 1 (1), 5 (2), 16.5 мас. % (3); б — 16.5 мас. %. Погрешность вычислений методом Монте-Карло составила 0.1% (не показана).

Скачать (88KB)
5. Рис. 4. Магнитная восприимчивость <χ> в зависимости от температуры для различных концентраций наполнителя 1, 5 и 16.5 мас. % (треугольники, квадраты и кружки соответственно), погрешность вычислений методом Монте-Карло составила 0.1% (не показана).

Скачать (57KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».