Maximum Achievable Diffraction Efficiency of Neutron Low-Frequency Gratings with Different Groove Profiles
- 作者: Goray L.I1,2,3,4, Kostromin N.A1,2
-
隶属关系:
- Saint Petersburg Electrotechnical University "LETI"
- Alferov University
- Institute for Analytical Instrumentation
- Moscow Institute of Physics and Technology
- 期: 编号 5 (2025)
- 页面: 22-28
- 栏目: Articles
- URL: https://bakhtiniada.ru/1028-0960/article/view/356808
- DOI: https://doi.org/10.7868/S3034573125050035
- ID: 356808
如何引用文章
详细
Rigorous calculations of the absolute diffraction efficiency η, performed earlier using two commercial computer solver based on electromagnetic methods, have shown that the maximum η of neutron gratings with sinusoidal and lamellar groove profiles can exceed known analytical limits. Thus, for a sinusoidal grating with a period of d = 50 μm, a groove depth of h = 53.4 nm at an incidence angle of θ = 89.72° (θc = 89.53°), η(−1) = 46.8% was obtained at a wavelength of λ = 1 nm, which is 38.5% higher than the maximum scalar efficiency. For a similar lamellar grating, η(−1) = 46.05% was obtained, which is 13.7% higher than the scalar one. In this work, for copper, one of the promising materials for cold neutron optics, not only gratings with sinusoidal and lamellar groove profiles were investigated, but also the most efficient gratings with a triangular profile ("with blaze") were considered. For a grating with d = 50 μm and h = 41.1 nm, η(−1) = 79.2% was obtained for θ = 89.37° and λ = 1 nm. The data calculated using both codes with an accuracy of ~0.1% for the main diffraction orders of gratings of all groove profiles converge well and correspond to the estimates obtained using the phenomenological approach.
作者简介
L. Goray
Saint Petersburg Electrotechnical University "LETI"; Alferov University; Institute for Analytical Instrumentation; Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: lig@pegrate.com
St. Petersburg, Russia; St. Petersburg, Russia; St. Petersburg, Russia; Dolgoprudny, Russia
N. Kostromin
Saint Petersburg Electrotechnical University "LETI"; Alferov University
Email: lig@pegrate.com
St. Petersburg, Russia; St. Petersburg, Russia
参考
- Utsuro M., Ignatovich V.K. Handbook of Neutron Optics. Verlag: Wiley-VCH, 2010. 610 p.
- https://www.google.ru/books/edition/__/q7Hf0AEACAAJ?hl=nu&sa=X&ved=2ahUKEwic09lA6vqJAXUkFikFHWLkMmgQ8fIDegQIExAD
- Scattering Length Density Calculator. http://www.refcalc.appspot.com/sld Accessed on November 24, 2024.
- Spiller E. Soft X-Ray Optics. Bellingham–Washington: SPIE Opt. Eng. Press, 1994. 278 p. https://books.google.ru/books?hl=ru<=&id=khnchMG2KdwC&oi=fnd&pg=PR9&ots=ZD97X1kbjs&sig=f6VAlnLcnFAUGHSZH716H93R8w&redit_esc=yiv-onepage&q&f=false
- Bushuev V.A., Frank A.I., Kulin G.V. // J. Exp. Theor. Phys. 2016. V. 122. P. 32. https://doi.org/10.1134/S1063776115120055
- Kulin G.V., Frank A.I., Rebrova N.V., Zakharov M.A., Gutfreund P., Khaydukov Yu.N., Ortega L., Roschupkin D.V., Goray L.I. // Eur. Phys. J. B. 2024. V. 97. P. 194. https://doi.org/10.1140/epjb/s10051-024-00829-7
- Goray L.I. // Bull. Russ. Acad. Sci. Phys. 2005. V. 69. P. 231.
- Born M., Wolf E. Principles of Optics. Cambridge: Cambridge University Press, 1999. 808 p. https://doi.org.10.1017/9781108769914
- Electromagnetic Theory of Gratings / Ed. Petit R. Berlin: Springer, 1980. 286 p.
- Loewen E.G., Neviere M., Maystre D. // JOSA. 1978. V. 68 Iss. 4. P. 496. https://doi.org/10.1364/JOSA.68.000496
- Neviere M., Flamand J. // Nucl. Instrum. Methods 1980. V. 172. P. 273. https://doi.org/10.1016/0029-554X(80)90646-1
- Goray L.I., Schmidt G. // Gratings: Theory and Numeric Applications / Ed. Popov E. Marseille: Universitaires de Provence, 2014. 578 p. www.fresnel.fr/numerical-grating-book-2
- Goray L.I. // Proc. SPIE. 1994. V. 2278. P. 173. https://doi.org/10.1117/12.180012
- Goray L.I, Jark W., Eichert D. // J. Synchrotron Radiat. 2018. V. 25. P. 1683. https://doi.org/10.1107/S1600577518012419
- Goray L.I. // Proc. Conf. 2024 Days on Diffraction (DD). IEEE Xplore. 2024. P. 65. https://doi.org/10.1109/DD62861.2024.10767957
- https://pegrate.com, Accessed on November 24, 2024.
- https://gsolver.com, Accessed on November 24, 2024.
- Goray L.I. // Waves Random Complex Media. 2010. V. 20. Iss. 4. P. 569. https://doi.org/10.1080/17455030.2010.510857
- Goray L.I. // J. Appl. Phys. 2010. V. 108. P. 033516. https://doi.org/10.1063/1.3467937
- Goray L.I. // J. Synchrotron Radiat. 2021. V. 28. P. 196. https://doi.org/10.1107/S160057752001440X
- Voronov D.L., Cambie R., Feshchenko R.M., Gullikson E.M., Padmore H.A., Vinogradov A.V., Yashchuk V.V.// Proc. SPIE. 2007. V. 6705. P. 67050E. https://doi.org/10.1117/12.732658
- Voronov D.L., Park S., Gullikson E.M., Salmassi F., Padmore H.A. // Opt. Express. 2023. V. 31. Iss. 16. P. 26724. https://doi.org/10.1364/OE.495374
- Revolutionizing Diffraction Gratings. https://inprentus.com/ Accessed on November 24, 2024.
- Voronov D.L., Park S., Gullikson E.M., Salmassi F., Padmore H.A. // Opt. Express. 2021. V. 29. P. 16676. https://doi.org/10.1364/OE.424536
补充文件

