Synthesis of Thin Films of NiO [111] on c-Al2O3 Substrates by Pulsed Laser Deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thin NiO films with thickness from 40 to 170 nm were obtained by pulsed laser deposition on c-Al2O3 substrates using the second harmonic of YAG:Nd3+- laser for ablation of a metal Ni target in a vacuum chamber at an oxygen pressure of 7.5 mTorr and substrate temperature of 370°C. Using X-ray diffraction, all NiO films were shown to have high crystalline perfection and the [111] orientation. The surface roughness of the obtained films is in the range from 1.6 to 2.3 nm. It was found that with increase in NiO film thickness, the charge carrier concentration decreased and the specific resistance increased. According to measurements of the optical properties of the films, the band gap increases from 3.43 to 3.63 eV with decreasing thickness.

About the authors

D. S Gusev

National Research Centre "Kurchatov Institute"

Email: dagietl04@gmail.com
Moscow, Russia

L. S Parshina

National Research Centre "Kurchatov Institute"

Email: parshinaliubov@mail.ru
Moscow, Russia

N. V Potekhina

Lomonosov Moscow State University

Moscow, Russia

N. N Eliseev

National Research Centre "Kurchatov Institute"

Moscow, Russia

I. N Nikolaeva

Lomonosov Moscow State University

Moscow, Russia

R. I Voronin

National Research Centre "Kurchatov Institute"

Moscow, Russia

O. D Khramova

National Research Centre "Kurchatov Institute"

Moscow, Russia

O. A Novodvorsky

National Research Centre "Kurchatov Institute"

Moscow, Russia

A. P Shkurinov

National Research Centre "Kurchatov Institute"; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

References

  1. Becker M., Polity A., Klar P. J. // J. Appl. Phys. 2017. V. 122. P. 175303. https://doi.org/10.1063/1.4991601
  2. Cheng R., Daniels M. W., Zhu J., Xiao D. // Phys. Rev. B. 2015. V. 91 P. 064423. https://doi.org/10.1103/PhysRevB.91.064423
  3. Reddy Y.A.K., Reddy A.S., Reddy P.S. // J. Alloys. Compd. 2014. V. 583. P. 396. https://doi.org/10.1016/j.jallcom.2013.08.180
  4. Carey M.J., Berkowitz A.E. // J. Appl. Phys. 1993. V. 73. P. 6892. https://doi.org/10.1063/1.352426
  5. Kumar S.A., Subhash T., Jitendra K. // J. Nanosci. Nanotechnol. 2008. V. 8. P. 4111. https://doi.org/10.1166/jnn.2008.AN36
  6. Zhao X., Zhang X., Yin Z., Li W., Yang C., Sun W., Zhang H., Li Y. // Coatings. 2022. V. 12. P. 118. https://doi.org/10.3390/coatings12020118
  7. Wang Z., Kovalev S., Awari N., Chen M., Germanskiy S., Green B., Deinert J.-C., Kampfrath T., Milano J., Gensch M. // Appl. Phys. Lett. 2018. V. 112. P. 252404. https://doi.org/10.1063/1.5031213
  8. Soleimanpour A.M., Jayatissa A.H., Sumanasekera G. // Appl. Surf. Sci. 2013. V. 276. P. 291. https://doi.org/10.1016/j.apsusc.2013.03.085
  9. Parshina L., Novodvorsky O., Khramova O., Gusev D., Polyakov A., Mikhalevsky V., Cherebilo E. // Chaos Soliton Fract. 2021. V. 142. P. 110460. https://doi.org/10.1016/j.chaos.2020.110460
  10. Largeanu A., Pompilian G., Galusca D., Agop M., Gurlui S. // U.P.B. Sci. Bull. A. 2011. V. 73. P. 195.
  11. Kakehi Y., Nakao S., Satoh K., Kusaka T. // J. Cryst. Growth. 2002. V. 237–239. P. 591. https://doi.org/10.1016/s0022-0248(01)01964-9
  12. Tzschaschel C., Otani K., Iida R., Shimura T., Ueda H., Gunther S., Fiebig M., Satoh T. // Phys. Rev. B. 2017. V. 95. P. 174407. https://doi.org/10.1103/PhysRevB.95.174407
  13. Rongione E., Gueckstock O., Mattern M., Gomonay O., Meer H., Schmitt C., Ramos R., Kikkawa T., Mičica M., Saitoh E., Sinova J., Jaffrès H., Mangeney J., Goennenwein S.T.B., Geprägs S., Kampfrath T., Kläui M., Bargheer M., Seifert T.S., Dhillon S., Lebrun R. // Nat. Commun. 2023. V. 14. P. 1818. https://doi.org/10.1038/s41467-023-37509-6
  14. Fischer J., Gomonay O., Schlitz R., Ganzhorn K., Vlietstra N., Althammer M., Huebl H., Opel M., Gross R., Goennenwein S.T.B., Geprägs S. // Phys. Rev. B. 2018. V. 97. P. 014417. https://doi.org/10.48550/arXiv.1709.04158
  15. Yadav S.K., Dhar S. // Semicond Sci Technol. 2021. V. 36. P. 055005. http://dx.doi.org/10.48550/arXiv.2103.04382
  16. Jahromi S.P., Huang N.M., Kamalianfar A., Lim H.N., Muhamad M.R., Yousefi R. // J. Nanomater. 2012. V. 2012. P. 173825. https://doi.org/10.1155/2012/173825
  17. Doaa S.J., Jehan A.S., Khawla S.K. // Eng. Tech. J. 2015. V. 33. P. 951. https://doi.org/10.30684/etj.33.5B.19
  18. Baldrati L., Gomonay O., Ross A., Filianina M., Lebrun R., Ramos R., Leveille C., Fuhrmann F., Forrest T. R., Maccherozzi F., Valencia S., Kronsat F., Saiton E., Sinova J., Kläui M. // Phys. Rev. Lett. 2019. V. 123. P. 177201. https://doi.org/10.1103/PhysRevLett.123.177201
  19. Zhang L., Zhang H., Zhang D., Li Y., Wen T., Zhong Z., Jin L. // Small Struct. 2023. V. 4. P. 2300076. https://doi.org/10.1002/sstr.202300076
  20. Xu J., Zhou C., Jia M., Shi D., Liu C., Chen H., Chen G., Zhang G., Liang Y., Li J., Zhang W., Wu Y. // Phys. Rev. B. 2019. V. 100. P. 134413. https://doi.org/10.1103/PhysRevB.100.134413
  21. Siddiqui S.A., Hong D., Pearson J.E., Hoffmann A. // Coatings. 2021. V. 11. P. 786. https://doi.org/10.3390/coatings11070786
  22. Wang C.X., Yang W., Zhang T.C., Liu H.W., Han Y.H., Luo J.F., Gao C.X., Zou G.T. // Diam. Relat. Mater. 2003. V. 12. P. 1548. https://doi.org/10.1016/S0925-9635(03)00237-1
  23. Zhang G., Lu K., Zhang X., Yuan W., Shi M., Ning H. // Micromachines. 2018. V. 9. P. 377. https://doi.org/10.3390/mi9080377
  24. Yousaf S., Zulfiqar S., Shahi M.S., Warsi M.F., Al-Khalli N.F., Aly Aboud M.F., Shakir I. // Ceram Int. 2020 V. 46. P. 3750. https://doi.org/10.1016/j.ceramint.2019.10.097
  25. Baldrati L., Ross A., Niizeki T., Schneider C., Ramos R., Cramer J., Gomonay O., Filianina M., Savchenko T., Heinze D., Kleibert A., Saitoh E., Sinova J., Kläui M. // Phys. Rev. B. 2018. V. 98. P. 024422. https://doi.org/10.1103/PhysRevB.98.024422

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).