Compact representation of the local atomic structure of matter for machine learning in XANES spectroscopy data processing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for representing data on the local structure of atoms in the form of histograms of paired radial distribution functions is proposed. This method is used to construct a structure descriptor needed to determine the structure of materials using machine learning and artificial intelligence techniques. A special feature of the method is the use of two sets of paired radial distribution functions simultaneously: for pairs of all types of atoms and for pairs with a selected absorbing atom. The developed approach was tested on the problem of determining the local atomic structure of the environment of the silver color center in sodium silicate glasses using data from X-ray absorption near-edge structure for the Ag K-edge. The information content of the proposed structure descriptor is demonstrated by the ability to reconstruct the three-dimensional structure of a silver color center model from the corresponding pairwise distance histograms. Using several machine learning methods, it was shown that the proposed descriptor allows to achieve high-quality reproduction (mean square error ~10–3) of X-ray absorption near-edge structure spectra for silver color centers in glass, which makes it possible to reduce the time for calculating X-ray absorption near-edge structure spectra by 4 orders of magnitude. The resulting machine learning model allows us to establish a fundamental connection between the atomic structure of silver color centers in glasses and the Ag X-ray absorption near-edge structure spectrum, which is necessary for determining the structure of glasses.

Texto integral

Acesso é fechado

Sobre autores

I. Viklenko

Southern Federal University

Autor responsável pela correspondência
Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

V. Srabionyan

Southern Federal University

Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

V. Durymanov

Southern Federal University

Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

Ya. Gladchenko-Dzhevelekis

Southern Federal University

Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

V. Razdorov

Southern Federal University

Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

L. Avakyan

Southern Federal University

Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

L. Bugaev

Southern Federal University

Email: viklenko@sfedu.ru
Rússia, 344090, Rostov-on-Don

Bibliografia

  1. Seko A., Toyoura K., Muto S., Mizoguchi T., Brode- rick S. // MRS Bull. 2018. V. 43. № 9. P. 6905.
  2. Хаметова Э.Ф., Бакиева О.Р. // Ученые записки Физического факультета МГУ. 2022. Т. 4. С. 2240703.
  3. Гуда С.А., Алгасов А.С. Технологии машинного обучения для анализа геометрии молекул // Вестник Ростовского Государственного университета путей сообщения. 2019. Т. 2. Вып. 74. С. 84.
  4. Орешко Е.И., Ерасов В.С., Сибаев И.Г., Луценко А.Н., Шершак П.В. // Авиационные материалы и технологии. 2022. Т. 4. Вып. 69. P. 132.
  5. Bratchenko I.A., Artemyev D.N., Khristoforova Y.A., Bratchenko L.A. // Biomed. Opt. Express. 2019. V. 10. № 9. P. 4489.
  6. Timoshenko J., Lu D., Lin Y., Frenkel A.I. // J. Phys. Chem. Lett. 2017. V. 8. № 20. P. 5091.
  7. Curtarolo S., Setyawan W., Wang S., Xue J., Yang K., Taylor R.H., Nelson L.J., Hart G.L.W., Sanvito S., Buongiorno-Nardelli M., Mingo N., Levy O. // Comput. Mater. Sci. 2012. V. 58. P. 227.
  8. Jain A., Ong S.P., Hautier G., Chen W., Richards W.D., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A. // APL Mater. 2013. V. 1. № 1. P. 011002.
  9. Borysov S.S., Geilhufe R.M., Balatsky A.V. // PLoS One. 2017. V. 12. № 2. P. 0171501. https://doi.org/10.1371/journal.pone.0171501
  10. Saal J.E., Kirklin S., Aykol M., Meredig B., Wolver- ton C. // JOM. 2013. V. 65. № 11. P. 1501.
  11. Ruddigkeit L., van Deursen R., Blum L.C., Reymond J.-L. // J. Chem. Inf. Model. 2012. V. 52. № 11. P. 2864.
  12. Ramakrishnan R., Dral P.O., Rupp M., von Lilienfeld O.A. // Sci. Data. 2014. V. 1. № 1. P. 140022.
  13. Shields M.D., Zhang J. // Reliability Engineering System Safety. 2016. V. 148. P. 96. https://doi.org/10.1016/j.ress.2015.12.002
  14. Guda A.A., Guda S.A., Martini A., Bugaev A.L., Soldatov M.A., Soldatov A.V., Lamberti C. // Radiat. Phys. Chem. 2020. V. 175. P. 108430.
  15. Himanen L., Jäger M.O.J., Morooka E. V., Federici Canova F., Ranawat Y.S., Gao D.Z., Rinke P., Foster A.S. // Comput. Phys. Commun. 2020. V. 247. P. 106949.
  16. Vedrinskii R.V., Kraizman V.L. // Uspekhi Fiz. Nauk. 1988. V. 154. № 1. P. 172.
  17. Koningsberger D.C., Prins R. X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. N.Y.: John Wiley and Sons Inc., 1987.
  18. van Bokhoven J.A., Lamberti C. X-Ray Absorption and X-Ray Emission Spectroscopy // X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications / Ed. Van Bokhoven J.A., Lamberti C. Chichester, UK: John Wiley & Sons, Ltd, 2016. P. 1.
  19. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. // J. Mach. Learn. Res. 2011. V. 12. P. 2825.
  20. Prokhorenkova L., Gusev G., Vorobev A., Dorogush A.V., Gulin A. CatBoost: unbiased boosting with categorical features. 2017. arXiv:1706.09516 https://doi.org/10.48550/arXiv.1706.09516
  21. Joly Y. // Phys. Rev. B. 2001. V. 63. № 12. P. 125120.
  22. Srabionyan V.V., Avakyan L.A., Durymanov V.A., Rubanik D.S., Viklenko I.A., Skunova A.V., Bugaev L.A. // J. Phys. Chem. Solids. 2023. V. 179. P. 111412.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Illustration of pairs of atoms of types A and B taken into account when constructing the FRPA, in the absence (a) and presence (b, c) of the selected X-ray photon-absorbing atom A*.

Baixar (95KB)
3. Fig. 2. Representation of information about the local atomic environment of a color center using histograms of the radial distribution relative to the absorbing atom (upper row) and histograms of all possible pairwise distances. The inset shows the corresponding structure of the color center.

Baixar (233KB)
4. Fig. 3. Schematic representation of the optimization procedure for the structure of the A–A subsystem. The dotted line shows the correct arrangement of atoms of type A, and the solid black color shows the initial parameters of the system.

Baixar (82KB)
5. Fig. 4. Schematic representation of the procedure for optimizing the relative position of subsystems A and B. The dotted line shows the position of subsystem A, the dashed line shows the position of subsystem B, and the dashed line shows the expected position of subsystem B relative to subsystem A.

Baixar (82KB)
6. Fig. 5. Comparison of histograms of pairwise distances (top row) and histograms of radial distribution relative to the absorbing atom in the color center: original (dashed) and reconstructed (solid lines); the inset shows the three-dimensional reconstructed structure of the color center.

Baixar (230KB)
7. Fig. 6. The value of the root-mean-square error of prediction of XANES spectra of the used machine learning models on the training (dark gray) and testing (light gray) data subsets.

Baixar (65KB)
8. Fig. 7. Comparison of the X-ray absorption spectra near the K-edge of Ag obtained using the gradient boosting model (solid line) and the spectra calculated in the FDMNES program (dashed line) for the training (top) and validation (bottom) data subsets.

Baixar (225KB)
9. Fig. 8. Comparison of the X-ray absorption spectra near the K-edge of Ag obtained using the gradient boosting model (solid line) and the spectrum calculated in the FMNESS program (dashed line) of a color center in a sodium silicate glass matrix with the structure obtained in [22] (shown in the inset).

Baixar (111KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».