Effect of proton irradiation on optical properties and defect formation in crystals Gd3AlxGa5–xO12 (x = 2, 3)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of proton irradiation with a dose of 50 Mrad (Si) on the optical properties and defect formation in crystals of the gadolinium-aluminum-gallium garnet with the substitution of aluminumand gallium in the cationic sublattice: Gd3Al2Ga3O12 (Al: Ga = 2:3) and Gd3Al3Ga2O12 (Al: Ga = 3:2) was studied. After proton irradiation, color of crystals changes: an additional absorption band appears in the transmittance of each crystal in the wavelength range 400–500 nm. This occures due to the formation of induced structural defects as color centers. The refractive indices n(λ) were determined by the Brewster spectrophotometric method and practically did not change for Al:Ga = 2:3 crystals, but significantly increased for Al:Ga = 3:2. There is a noticeable increase in the attenuation of the light in spectral dependences, which also indicates the formation of additional structural defects.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Kasimova

National University of Science and Technology "MISIS"

Хат алмасуға жауапты Автор.
Email: kasimovavalya@mail.ru
Ресей, 119049, Moscow

N. Kozlova

National University of Science and Technology "MISIS"

Email: kasimova.vm@misis.ru
Ресей, 119049, Moscow

E. Zabelina

National University of Science and Technology "MISIS"

Email: kasimovavalya@mail.ru
Ресей, 119049, Moscow

O. Buzanov

JSC FOMOS-MATERIALS

Email: kasimovavalya@mail.ru
Ресей, 107023, Moscow

P. Lagov

National University of Science and Technology "MISIS"; Institute of Physical Chemistry and Electrochemistry RAS

Email: kasimovavalya@mail.ru
Ресей, 119049, Moscow; 119071, Moscow

Yu. Pavlov

Institute of Physical Chemistry and Electrochemistry RAS

Email: kasimovavalya@mail.ru
Ресей, 119071, Moscow

T. Kulevoy

Kurchatov Complex for Theoretical and Experimental Physics NRC “Kurchatov Institute”

Email: kasimovavalya@mail.ru
Ресей, 117218, Moscow

V. Stolbunov

Kurchatov Complex for Theoretical and Experimental Physics NRC “Kurchatov Institute”

Email: kasimovavalya@mail.ru
Ресей, 117218, Moscow

Әдебиет тізімі

  1. Блистанов А.А. Кристаллы квантовой и нелинейной оптики: учебное пособие. М.: МИСиС, 2007. 432 с.
  2. Каминский А.А. Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. 271 с.
  3. Каминский А.А. Лазерные кристаллы. М.: Наука, 1975. 250 с.
  4. Dorenbos P. // Radiation Detectors for Medical Applications. Springer, 2006. P. 191. https://doi.org./0.1007/1-4020-5093-3_8
  5. Lecoq P. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 809. P. 130. https://doi.org./10.1016/j.nima.2015.08.041
  6. Sato Y., Terasaka Y., Utsugi W., Kikuchi H., Kiyoo ka H., Torii T. // J. Nucl. Sci. Technol. 2018. V. 55. № 9. P. 965. https://doi.org./10.1080/00223131.2019.1581111
  7. Korzhik M., Alenkov V., Buzanov O., Fedorov A., Dosovitskiy G., Grigorjeva L., Mechinsky V., Sokolov P., Tratsiak Ya., Zolotarjovs A., Dormenev V., Dosovitskiy A., Agrawal D., Anniyev T., Vasilyev M., Khabashesku V. // Crystal Res. Technol. 2019. V. 54. № 4. P. 1800172. https://doi.org./10.1002/crat.201800172
  8. Alenkov V., Buzanov O., Dosovitskiy G., Egorychev V., Fedorov A., Golutvin A., Guz Yu., Jacobsson R., Korjik M., Kozlov D., Mechinsky V., Schopper A., Semennikov A., Shatalov P., Shmanin E. // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 916. P. 226. https://doi.org./10.1016/j.nima.2018.11.101
  9. Martinazzoli L. // IEEE Transac. Nucl. Sci. 2020. V. 67. № 6. P. 1003. https://doi.org./10.1109/TNS.2020.2975570
  10. Dilillo G., Campana R., Zampa N., Fuschino F., Pauletta G., Rashevskaya I., Ambrosino F., Baruzzo M., Cauz D., Cirrincione D., Citossi M., Casa G.D., Ruzza B.D., Galgóczi G., Labanti C., Evangelista Yu., Ripa J., Vacchi A., Tommasino F., Verroi E., Fiore F. // Proc. SPIE. 2020. V. 11444. P. 1144493. https://doi.org./10.1117/12.2561053
  11. Komar J., Solarz P., Jeżowski A., Głowacki M., Berkowski M., Ryba-Romanowski W. // J. Alloys Compd. 2016. V. 688. P. 96. https://doi.org./10.1016/j.jallcom.2016.07.139
  12. Kimura H., Miyazaki A. // Jpn. J. Appl. Phys. 2002. V. 41. № 8R. P. 5334. https://doi.org./10.1143/JJAP.41.5334
  13. Bartosiewicz K., Markovskyi A., Horiai T., Szymański D., Kurosawa S., Yamaji A., Yoshikawa A., Zorenko Y. // J. Alloys Compd. 2022. V. 905. P. 164154. https://doi.org./10.1016/j.jallcom.2022.164154
  14. Конабеевский С.Т. Действие облучения на материалы. Введение в радиационное материаловедение. М.: Атомиздат, 1967. 401 с.
  15. Жариков Е.В., Куратев И.И., Лаптев В.В., Насельский С.П., Рябов А.И., Торопкин Г.Н., Шеста- ков А.В., Щербаков И.А. // Изв. АН СССР. Сер. физ. 1984. Т. 48. № 7. С. 1351.
  16. Матковский А.О., Сугак Д.Ю., Улманис У.А., Савицкий В.Г. Центры окраски в редкоземельных галлиевых гранатах. Пос. Саласпилс (ЛатвССР): ЛАФИ, 1987. 42 с.
  17. Касимова В.М., Козлова Н.С., Бузанов О.А., Забелина Е.В., Лагов П.Б., Павлов Ю.С. // Поверхность. Рентген., синхротр, и нейтрон. исслед. 2021. № 12. С. 1. https://doi.org./10.31857/S1028096021120074
  18. Lagov P., Drenin A., Zinovjev M. // J. Phys.: Conf. Ser. 2017. V. 830. № 1. P. 012152. https://doi.org./10.1088/1742 6596/755/1/011001
  19. Van Lint V.A.J., Gigas G., Barengolt J. // IEEE Trans. Nucl. Sci. 1975. V. 22. P. 2663. https://doi.org./10.1109/TNS.1975.4328186
  20. Забелина Е.В., Козлова Н.С., Гореева Ж.А., Касимова В.М. // Изв. вузов. Материалы электронной техники. 2019. Т. 22. № 3. С. 168. https://doi.org./10.17073/1609-3577-2019-3-168-178
  21. ГОСТ 3520–92 Методы определения показателей ослабления. М.: Изд-во стандартов, 1992. 19 с.
  22. Sakthong O., Chewpraditkul W., Wanarak C., Pejchal J., Kamada K., Yoshikawa A., Pazzi G.P., Nikl M. // Opt. Mater. 2013. V. 36. № 2. P. 568. https://doi.org./10.1016/j.optmat.2013.10.033
  23. Pujats A., Springis M. // Radiat. Eff. Defects Solids. 2001. V. 155. № 1–4. P. 65. https://doi.org./10.1080/10420150108214094
  24. Орлова А.Н. Влияние радиационных воздействий на оптические свойства монокристаллов ниобата лития: Дис. ... канд. физ.-мат. наук: 01.04.07. Тверь: ТвГУ, 2007. 117 с.
  25. Kasimova V., Kozlova N., Buzanov O., Zabelina E. // AIP Conf. Proc. 2020. V. 2308. № 1. P. 020003. https://doi.org./10.1063/5.0035129
  26. Касимова В.М., Козлова Н.С., Бузанов О.А., Забелина Е.В., Таргонский А.В., Рогачев А.В. // Неорган. материалы. 2022. Т. 58. № 3. C. 302. https://doi.org./10.31857/S0002337X2203006X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The appearance of the studied crystals Gd3Al2Ga3O12 (a) and Gd3Al3Ga2O12 (b) before and after proton irradiation.

Жүктеу (170KB)
3. Fig. 2. Spectral dependences of the transmission coefficients of Gd3Al2Ga3O12 (1, 2) and Gd3Al3Ga2O12 (3, 4) crystals before (1, 3) and after (2, 4) proton irradiation. The insert shows an approximate section of the transmission coefficient spectra in the wavelength range of 300-700 nm.

Жүктеу (352KB)
4. Fig. 3. Dispersion dependences of the refractive coefficients of Gd3Al2Ga3O12 (1, 2) and Gd3Al3Ga2O12 (3, 4) crystals before (1, 3) and after (2, 4) proton irradiation.

Жүктеу (205KB)
5. Fig. 4. Spectral dependences of the attenuation indices of Gd3Al2Ga3O12 (1, 2) and Gd3Al3Ga2O12 (3, 4) crystals before (1, 3) and after (2, 4) proton irradiation. The insert shows an approximate section of the spectra of attenuation indicators in the wavelength range 350-700 nm.

Жүктеу (322KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».