Carotid artery stenosis results in chronic cerebral hypoperfusion and dysfunctions of cerebral vasculature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carotid artery stenosis results in chronic cerebral hypoperfusion and dysfunctions of cerebral vasculature. The aim of the work was to evaluate changes in cerebral blood flow regulation in rats two days after bilateral stenosis of the common carotid arteries. Carotid stenosis (CS group) was performed using silver clamps (decrease in volume blood flow rate (VBRF) by 70–80%), sham-operated rats served as a control (CON). Blood flow velocity in large branches of the right middle cerebral artery was recorded by laser speckle-contrast visualization (after thinning of the skull) under urethane anesthesia and artificial ventilation with subsequent calculation of vessel diameter and VBRF. Tests with respiratory hypercapnia (5% and 10% CO2) and gradual bleeding (five-fold blood sampling from the inferior vena cava, 5% of the circulating blood volume at 5-min intervals) were performed. Blood biochemical parameters (lipoprotein profile and urea/creatinine levels) did not differ between the CON and CS groups. The mean arterial pressure in the baseline and its changes during the interventions also did not differ between the two groups. Hypercapnia resulted in a comparable increase in VBRF in the CON and CS groups. In CS rats, bleeding induced a decrease in VBRF, while VBRF did not decrease in the CON group. Using spectral analysis, low-frequency (0.1 Hz) oscillations of blood flow velocity were explored in the arteries; such frequency peak was absent in the spectrum of mean arterial pressure. The power of such oscillations increased during blood loss in the CON group but not in the CS group. Thus, narrowing the carotid arteries leads to disruption of compensatory capabilities of cerebral blood flow regulation with gradual decrease in arterial pressure due to blood loss, as well as to suppression of vasomotions of cerebral arterial tone.

About the authors

K. A Bogotskoy

Institute of Biomedical Problems RAS

Moscow, Russia

A. S Borovik

Institute of Biomedical Problems RAS

Moscow, Russia

A. A Borzykh

Institute of Biomedical Problems RAS

Moscow, Russia

A. A Druzhinina

Institute of Biomedical Problems RAS; M.V. Lomonosov Moscow State University

Moscow, Russia

M. G Pechkova

Institute of Biomedical Problems RAS

Moscow, Russia

O. S Tarasova

Institute of Biomedical Problems RAS; M.V. Lomonosov Moscow State University

Email: tarasovaa@my.msu.ru
Moscow, Russia

References

  1. Dossabhoy S., Arya S. // Semin. Vasc. Surg. 2021. V. 34. № 1. P. 3–9.
  2. Aday A.W., Beckman J.A. // Prog. Cardiovasc. Dis. 2017. V. 59. № 6. P. 585–590.
  3. Acampa M., Guideri F., Marotta G., Tassi R., D’Andrea P., Giudice G., Gistri M., Rocchi R., Bernardi A., Bracco S., Venturi C., Martini G. // Neurosci. Lett. 2011. V. 491. № 3. P. 221–226.
  4. Rupprecht S., Finn S., Hoyer D., Guenther A., Witte O.W., Schultz T., Schwab M. // Transl. Stroke Res. 2020. V. 11. № 1. P. 50–59.
  5. Duffin J., Mikulis D.J., Fisher J.A. // Front. Physiol. 2021. V. 12. Art. 640075.
  6. Boedtkjer E. // J. Cereb. Blood Flow Metab. 2018. V. 38. № 4. P. 588–602.
  7. Donnelly J., Budohoski K.P., Smielewski P., Czosnyka M. // Crit. Care. 2016. V. 20. № 1. P. 1–17.
  8. Claassen J.A.H.R., Thijssen D.H.J., Panerai R.B., Faraci F.M. // Physiol. Rev. 2021. V. 101. № 4. P. 1487–1559.
  9. Bunenkov N.S., Karpov A.A., Galaguza M.M. // Arter. Hypertens. 2024. V. 30. № 1. P. 21–31.
  10. Rickards C.A., Johnson B.D., Harvey R.E., Convertino V.A., Joyner M.J., Barnes J.N. // J. Appl. Physiol. 2015. V. 119. № 6. P. 677–685.
  11. Evans R.G., Ventura S., Dampney R.A., Ludbrook J. // Clin. Exp. Pharmacol. Physiol. V. 28. № 5–6. P. 479–487.
  12. Sobczyk O., Sam K., Mandell D.M., Crawley A.P., Venkatraghavan L., McKetton L., Poulbanc J., Duffin J., Fisher J.A., Mikulis D.J. // Front. Physiol. 2020. V. 11. Art. 1031.
  13. Igarashi T., Sakatani K., Fujiwara N., Murata Y., Suma T., Shibuya T., Hirayama T., Katayama Y. // Adv. Exp. Med. Biol. 2013. V. 789. P. 463–467.
  14. Kimura S., Iwata M., Takase H., Lo E.H., Arai K. // J. Cereb. Blood Flow Metab. 2024. V. 45. № 3. P. 381–395.
  15. Roloff E.V.L., Tomiak-Baquero A.M., Kasparov S., Paton J.F.R. // J. Physiol. 2016. V. 594. № 22. P. 6463–6485.
  16. Fadyukova O.E., Storozhevykh T.P., Pinelis V.G., Koshelev V.B. // Brain Res. 2004. V. 995. № 1. P. 145–149.
  17. Spray S., Johansson S.E., Radziwon-Balicka A., Haanes K.A., Warfvinge K., Polvsen G.K., Kelly P.A.T., Edvinsson L. // Acta Physiol. 2017. V. 220. № 4. P. 417–431.
  18. Bogotskoy K.A., Tarasova O.S., Panchin Y. V. // Aviakosmicheskaya i Ekol. Meditsina. 2024. V. 58. № 2. P. 10–16.
  19. Staehr C., Rajanathan R., Postnov D.D., Hangaard L., Bouzinova E. V., Lykke-Hartmann K., Bach F.W., Sandow S.L., Aalkjaer C., Matchkov V.V. // Cardiovasc. Res. 2020. V. 116. № 12. P. 2009–2020.
  20. Staehr C., Giblin J.T., Gutiérrez-Jiménez E., Guldbrandsen H., Tang J., Sandow S.L., Boas D.A., Matchkov V.V. // J. Am. Heart Assoc. 2023. V. 12. Art. e029527.
  21. Negulyaev V.O., Tarasova O.S., Tarasova N.V., Lukoshkova E.V., Vinogradova O.L., Borovik A.S. // Physiol. Meas. 2019. V. 40. № 5. Art. 054003.
  22. Postnov D.D., Tuchin V.V., Sosnovtseva O. // Biomed. Opt. Express. 2016. V. 7. № 7. P. 2759.
  23. Faul F., Erdfelder E., Lang A.G., Buchner A. // Behav. Res. Methods. 2007. V. 39. № 2. P. 175–191.
  24. Kecskés S., Menyhárt Á., Bari F., Farkas E. // Front. Aging Neurosci. 2023. V. 15. Art. 1175281.
  25. Hudetz A.G., Roman R.J., Harder D.R. // J. Cereb. Blood Flow Metab. 1992. V. 12. № 3. P. 491–499.
  26. Baranovicova E., Kalenska D., Tomascova A., Holubcikova S., Lehotsky J. // IUBMB Life. 2020. V. 72. № 9. P. 2010–2023.
  27. Nejad K.H., Gharib-Naseri M.K., Sarkaki A.R., Dianat M., Badavi M., Farbood Y. // Iran. J. Basic Med. Sci. 2017. V. 20. № 1. P. 75–82.
  28. O’Leary D.S., Scher A.M. // Am. J. Physiol. – Hear. Circ. Physiol. 1990. V. 258. P. H73–H79.
  29. Shimokawa A., Kunitake T., Takasaki M., and Kannan H. Differential effects of anesthetics on sympathetic nerve activity and arterial baroreceptor reflex in chronically instrumented rats // J Aut. Nerv Syst. 1998. V. 72. № 1. P. 46–54.
  30. Matsuo N., Matsuo S., Nakamura Y., Ezomo F.O., Kawai Y. Regulatory effects of cervical sympathetic trunk and renal sympathetic nerve activities on cerebral blood flow during head-down postural rotations // Auton. Neurosci. Basic Clin. 2020. V. 229. Art. 102738.
  31. Mastantuono T., Starita N., Battiloro L., Di Maro M., Chiurazzi M., Nasti G., Muscariello E., Cesarelli M., Iuppariello L., D’Addio G., Gorbach A., Colantuoni A., Lapi D. // Front. Cell. Neurosci. 2017. V. 11. Art. 298.
  32. Aleksandrin V.V., Ivanov A.V., Virus E.D., Bulgakova P.O., Kubatiev A.A. // Lasers Med. Sci. 2018. V. 33. № 6. P. 1327–1333.
  33. Márquez-Martín A., Jiménez-Altayó F., Dantas A.P., Caracuel L., Planas A.M., Vila E. // J. Appl. Physiol. 2012. V. 112. № 3. P. 511–518.
  34. Shin H.K., Hong K.W. // Clin. Exp. Pharmacol. Physiol. 2004. V. 31. № 1–2. P. 1–7.
  35. Kroetsch J.T., Levy A.S., Zhang H., Aschar-Sobbi R., Lidington D., Offermanns S., Nedospasov S.A., Backx P.H., Heximer S.P., Bolz S.S. // Nat. Commun. 2017. V. 8. Art. 14805.
  36. Kannurpatti S.S., Biswal B.B., Kim Y.R., Rosen B.R. // Neuroimage, 2008. V. 40. № 4. P. 1738–1747.
  37. Kleinfeld D., Mitra P.P., Helmchen F., Denk W. // Proc. Natl. Acad. Sci. U. S. A. 1998. V. 95. № 26. P. 15741–15746.
  38. Aalkjaer C., Boedtkjer D., Matchkov V. // Acta Physiol. 2011. V. 202. № 3. P. 253–269.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).