Analysis of Changes in Parameters of Neuromuscular Synaptic Transmission in Mice During Early Postnatal Ontogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The intercellular contact between a motor neuron and a skeletal muscle fiber is one of the general models for electrophysiological studies of the mechanisms underlying the functioning of a chemical synapse. At the same time, there is very little data on the features of the process of neuromuscular synaptic transmission in animals at the early stages of postnatal development, and no systematic study of changes in electrophysiological parameters in ontogenesis has been conducted. Using a relatively recently proposed model, namely, a neuromuscular preparation of m. levator auris longus of a mouse, and the classical method of dissection of muscle fibers (to block contractions), we have for the first time carried out a detailed analysis of the most commonly used electrophysiological parameters characterizing the processes of spontaneous and evoked quantal release of acetylcholine from motor nerve endings: amplitude-temporal parameters of spontaneous and evoked end plate potentials, frequency of miniature potentials, quantal content and latency of evoked responses. The dynamics of changes in the recorded parameters throughout the entire life of a mouse is demonstrated. Particularly striking changes were detected in the first days after birth, but, as it turned out, neuromuscular signaling in two-week-old animals still differs significantly in a number of parameters from what occurs in the synapse of an adult organism. The data obtained can be used in the future to study the ontogenetic features of various neuroregulatory processes.

About the authors

E. S. Nevsky

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS

Kazan, Russia

K. A. Petrov

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS

Kazan, Russia; Kazan, Russia

D. V. Samigullin

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Kazan National Research Technical University named after A. N. Tupolev - KAI

Kazan, Russia; Kazan, Russia

A. I. Malomouzh

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Kazan National Research Technical University named after A. N. Tupolev - KAI

Email: artur57@list.ru
Kazan, Russia; Kazan, Russia

References

  1. Katz B. // J. Neurocytol. 2003. Vol. 32. № 5–8. P. 437–446.
  2. Vyskočil F., Malomouzh A., Nikolsky E. // Physiol. Res. 2009. P. 763–784.
  3. Malomouzh A.I., Nikolsky E.E. // Biochem. (Moscow) Suppl. Ser. A Membr. Cell. Biol. 2018. Vol. 12. № 3. P. 209–222.
  4. Ma J., Kelly L., Ingram J., Price T., Meriney S., Dittrich M. // J. Neurophysiol. 2015. Vol. 113. № 1. P. 71–87.
  5. Wood S.J., R. Slater C. // Prog. Neurobiol. 2001. Vol. 64. № 4. P. 393–429.
  6. Slater C.R. // Compr. Physiol. 2024. P. 5641–5702.
  7. Legay C., Mei L. // J. Neurochem. 2017. Vol. 142. № S2. P. 59–63.
  8. Lacomis D. // J. Clin. Neuromuscul. Dis. 2024. Vol. 26. № 2. P. 90–99.
  9. Willadt S., Nash M., Slater C. // Ann. N. Y. Acad. Sci. 2018. Vol. 1412. № 1. P. 41–53.
  10. Yamaguchi T., Kouzaki K., Sasaki K., Nakazato K. // J. Physiol. 2025. Vol. 603. № 1. P. 107–125.
  11. Tsentsevitsky A., Sibgatullina G., Odoshivkina Y., Khuzakhmetova V., Tokmakova A., Ponomareva A., Salnikov V., Zakirjanova G., Petrov A., Bukharaeva E. // Int. J. Mol. Sci. 2024. Vol. 25. № 16. P. 8959.
  12. Li Y., Badawi Y., Meriney S.D. // Cells. 2024. Vol. 13. № 20. P. 1684.
  13. Herbst R., Huijbers M., Oury J., Burden S. // Cold Spring Harb. Perspect. Biol. 2024. Vol. 16. № 5. P. a041490
  14. Gromova A., La Spada A.R. // Trends Neurosci. 2020. Vol. 43. № 9. P. 709–724.
  15. Wood S.J., Slater C.R. // J. Physiol. 1997. Vol. 500. № 1. P. 165–176.
  16. Angaut-Petit D., Molgo J., Connold A., Faille L. // Neurosci Lett. 1987. Vol. 82. № 1. P. 83–88.
  17. Burke S., Reed E., Romer S., Voss A. // J. Vis. Exp. 2018. № 135. P. 57482
  18. Zhilyakov N., Arkhipov A., Malomouzh A., Samigullin D. // Int. J. Mol. Sci. 2021. Vol. 22. № 16. P. 9031.
  19. Arkhipov A., Fedorov N., Nurullin L., Khabibrakhmanov A., Mukhamedyarov M., Samigullin D., Malomouzh A. // Cell. Mol. Neurobiol. 2023. Vol. 43. № 8. P. 4157–4172.
  20. Mella J., Bermedo-Garcia F., Medina-Moreno A., Ojeda J., Henríquez J. // J. Vis. Exp. 2024. № 213.
  21. Petrov K., Lenina O., Leroy J., Bernard V., Germain T., Truong C., Nurullin L., Sibgatullina G., Ohno K., Samigullin D., Krejci E. // J. Physiol. 2025. Vol. 603. № 2. P. 507–527.
  22. Pérez-Castro M., Hernández-Rasco F., Alonso-Bellido I., Letrán-Sánchez M., Pérez-Villegas E., Vitallé J., Real L., Ruiz-Mateos E., Venero J., Tabares L., Carrión Á., Armengol J., Bachiller S., Ruiz R. // Int. J. Mol. Sci. 2025. Vol. 26. № 2. P.793.
  23. Тарасова Е., Хоткина Н., Богачева П., Чернышев К., Гайдуков А., Балезина О. // Биол. мембраны. 2022. Vol. 39. № 1. P. 63–74.
  24. McLachlan E.M., Martin A.R. // J. Physiol. 1981. Vol. 311. № 1. P. 307–324.
  25. Santafé M.M., Garcia N., Lanuza M.A., Uchitel O.D., Tomás J. // Neurosci. 2001. Vol. 102. № 3. P. 697–708.
  26. Brown M.C., Jansen J.K., Van Essen D. // J. Physiol. 1976. Vol. 261. № 2. P. 387–422.
  27. Redfern P.A. // J. Physiol. 1970. Vol. 209. № 3. P. 701–709.
  28. Kullberg R.W., Mikelberg F.S., Cohen M.W. // Dev. Biol. 1980. Vol. 75. № 2. P. 255–267.
  29. Krejci E., Legay C., Thomine S., Sketelj J., Massoulié J. // J. Neurosci. 1999. Vol. 19. № 24. P. 10672–10679.
  30. Nakajima Y., Kidokoro Y., Klier F.G. // Dev. Biol. 1980. Vol. 77. № 1. P. 52–72.
  31. Sanes J.R., Lichtman J.W. // Annu. Rev. Neurosci. 1999. Vol. 22. № 1. P. 389–442.
  32. Dennis M.J. // Annu. Rev. Neurosci. 1981. Vol. 4. № 1. P. 43–68.
  33. Gray W.R., Olivera B.M., Cruz L.J. // Annu. Rev. Biochem. 1988. Vol. 57. № 1. P. 665–700.
  34. Hill J.M., Alewood P.F., Craik D.J. // Biochem. 1996. Vol. 35. № 27. P. 8824–8835.
  35. Barstad J.A., Lilleheil G. // Arch. Int. Pharmacodyn. Ther. 1968. Vol. 175. № 2. P. 373–390.
  36. Bazzy A.R. // Brain Res. Dev. Brain Res. 1994. Vol. 81. № 2. P. 314–317.
  37. Giniatullin A.R., Mukhutdinova K.A., Petrov A.M. // Neurochem. Res. 2024. Vol. 49. № 8. P. 2021–2037.
  38. Zakirjanova G., Giniatullin A., Gafurova C., Malomouzh A., Fedorov N., Khaziev A., Tsentsevitsky A., Petrov A. // Arch. Biochem. Biophys. 2023. Vol. 749. P. 109803.
  39. Bogacheva P.O., Potapova D.A., Gaydukov A.E. // Neurochem. Res. 2025. Vol. 50. № 2. P. 104.
  40. Khuzakhmetova V., Samigullin D., Nurullin L., Vyskočil F., Nikolsky E., Bukharaeva E. // Int. J Dev. Neurosci. 2014. Vol. 34. № 1. P. 9–18.
  41. Ribchester R., Barry J. // Exp. Physiol. 1994. Vol. 79. № 4. P. 465–494.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).