🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

POSSIBLE MECHANISM OF REPETITIVE STEREOTYPIC MOVEMENT PATTERNS IN AUTISM SPECTRUM DISORDERS (A ROLE OF NEUROMODULATORS)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A possible mechanism for repetitive stereotypic movement patterns (SMPs) in autism spectrum disorders (RAS) has been proposed. We used known data on the abnormal functioning of the neural network, including the neocortex, basal ganglia, thalamus, hippocampus and cerebellum. Taking into account the possible mechanism of functioning of this network that we proposed earlier, an analysis was carried out of the influence on its functioning of changes in the concentration of dopamine, adenosine, cannabinoids and corticoids that are characteristic of ASD. From the proposed mechanism it follows that the weakening of motor activity, one of the manifestations of which is SMPs, can be facilitated by antagonists of Gs and Gq/11 protein coupled receptors on striatoniqral cells and agonists of receptors of this type on striatopallidal cells, as well as antagonists of Gi/0 protein coupled receptors on striatopallidal cells and their agonists on striatoniqral cells. Taking into account the known data on the location of receptors on the striatal spiny cells, it follows from this mechanism that the most effective for weakening SMPs may be agonists of adenosine A2A and cannabinoid CB1 receptors, as well as antagonists of dopamine D2, histamine H3 and glucocorticoid receptors (or an effect that reduces cortisol level). When systemic using, these substances can weaken SMPs, both due to inhibition of thalamic neurons via the basal ganglia, and due to an increase in the activity of the subthalamic nucleus neurons and pyramidal neurons in the CA1 hippocampal area, the influence of which on the neocortex and amygdala prevents the shift from “cognitive” to “habitual” control of movements, which depends on the dorsal striatum. This mechanism allows to explain the strengthening and weakening of SMPs under the influence of stress and cannabinoids, respectively. The known results of clinical and experimental studies of SMPs provide evidence in favor of the proposed mechanism, which differs from those known from the literature. It may be useful in the development of new drugs for the treatment of SMPs in RAS.

About the authors

I. G Silkis

Institute of Higher Nervous Activity and Neurophysiology RAS

Email: isa-silkis@mail.ru
Moscow, Russia

References

  1. van der Heijden M.E., Gill J.S., Sillitoe R.V. // Dev. Neurosci. 2021. V. 43. № 3–4. P. 181–190.
  2. Kim H., Lim C.S., Kaang B.K. // Behav. Brain Funct. 2016. V.12. № 1. P. 3.
  3. Jaber M. // Encephale. 2017. V. 43. № 2. P. 170–175.
  4. Staal W.G. // Eur. Neuropsychopharmacol. 2015. V. 25. № 9. P. 1421–1426.
  5. Vicente A.M., Martins G.J., Costa R.M. // Curr. Opin. Genet. Dev. 2020. V. 65. P. 151–159.
  6. Subramanian K., Brandenburg C., Orsati F., Soghomonian J.J., Hussman J.P., Blatt G.J. // Autism Res. 2017. V. 10. № 11. P. 1751–1775.
  7. Gremel C.M., Costa R.M. // Nat. Commun. 2013. V. 4. P. 1–12.
  8. Zerbes G., Kausche F.M., Schwabe L. // Eur. J. Neurosci. 2022. V. 55. № 9–10. P. 2699–2713.
  9. Bauman M.D., Toscano J.E., Babineau B.A., Mason W.A., Amaral D.G. // Behav. Neurosci. 2008. V. 122. № 5. P. 1005–1015.
  10. Ferhat A.T., Halbedl S., Schmeisser M.J., Kas M.J., Bourgeron T., Ey E. // Adv. Anat. Embryol. Cell Biol. 2017. V. 224. P. 85–101.
  11. Gremel C.M., Chancey J.H., Atwood B.K., Luo G., Neve R., Ramakrishnan C., Deisseroth K., Lovinger D.M., Costa R.M. // Neuron. 2016. V. 90. P. 1312–1324.
  12. Graybiel A.M. // Annu. Rev. Neurosci 2008. V. 31. P. 359–387.
  13. Yin H.H., Knowlton B.J. // Nat. Rev. Neurosci. 2006. V. 7. P. 464–476.
  14. Estes A., Shaw D.W., Sparks B.F., Friedman S., Giedd J.N., Dawson G., Bryan M., Dager S.R. // Autism Res. 2011. V. 4. № 3. P. 212–220.
  15. Unruh K.E., Martin L.E., Magnon G., Vaillancourt D.E., Sweeney J.A., Mosconi M.W. // J. Neurophysiol. 2019. V. 122. № 4. P. 1330–1341.
  16. Travers B.G., Kana R.K., Klinger L.G., Klein C.L., Klinger M.R. // Autism Res. 2015. V. 8. № 1. P. 38–51.
  17. Green S.A., Hernandez L., Bookheimer S.Y., Dapretto M. // Autism Res. 2017. V. 10. № 5. P. 801–809.
  18. Su L.D., Xu F.X., Wang X.T., Cai X.Y., Shen Y. // Neuroscience. 2021. V. 462. P. 320–327.
  19. Tsai P.T. // Semin. Fetal Neonatal. Med. 2016. V. 21. № 5. P. 349–355.
  20. Hampson D.R., Blatt G.J. // Front. Neurosci. 2015. V. 9. P. 420.
  21. Cardon G.J., Hepburn S., Rojas D.C. // Front. Neurol. 2017. V. 8. P. 615.
  22. D’Mello A.M., Stoodley C.J. // Front. Neurosci. 2015. V. 9. P. 408.
  23. Morris L.S., Baek K., Voon V. // Cortex. 2017. V. 88. P. 143–150.
  24. Lewis M.H., Lindenmaier Z., Boswell K., Edington G., King M.A., Muehlmann A.M. // Genes Brain Behav. 2018. V. 17. № 8. P. e12468.
  25. Pavăl D. // Dev. Neurosci. 2017. V.39. № 5. P. 355–360.
  26. Chhabra S., Nardi L., Leukel P., Sommer C.J., Schmeisser M.J. // Front. Psychiatry. 2023. V. 14. P. 1110525.
  27. Lee Stubbeman B., Brown C.J., Yates J.R., Bardgett M.E. // Pharmacol. 2017. V. 812. P. 256–263.
  28. DiCarlo G.E., Aguilar J.I., Matthies H.J.G., Harrison F.E., Bundschuh K.E., West A., Hashemi P., Herborg F., Rickhag M., Chen H., Gether U., Wallace M.T., Galli A. // J. Clin. Invest. 2019. V. 29. P. 3407–3419.
  29. Masino S.A., Kawamura M. Jr., Cote J.L., Williams R.B., Ruskin D.N. // Neuropharmacology. 2013. V. 68. P. 116–121.
  30. Poleszak E., Malec D. // Pol. J. Pharmacol. 2000. V. 52. P. 423–429.
  31. Силькис И.Г. // Журн. высш. нерв. деят. 2022. Т. 72 № 1. С. 28–47.
  32. Силькис И.Г. // Успехи физиол. наук. 2021. T. 52. № 1.C. 1–14
  33. Силькис И.Г. // Журн. высш. нерв. деят. 2001. Т. 51. № 3. С. 293–302.
  34. Силькис И.Г. // Рос. Физиол. журн. им. И.М. Сеченова. 2001. Т. 87. № 2. С. 155–169.
  35. Силькис И.Г. // Рос. Физиол. журн. им. И.М. Сеченова. 2002. Т. 88. № 2. C. 144–157.
  36. Cavdar S., Ozgur M., Cakmak Y.O., Kuvvet Y., Kunt S.K., Sağlam G. // Acta Neurobiol. Exp. (Wars). 2018. V. 78. № 3. P. 251–263.
  37. Wang Z.M., Wei P.H., Shan Y., Han M., Zhang M., Liu H., Gao J.H., Lu J. // Neuroimage. 2020. V. 210. P. 116573.
  38. Bostan A.C., Strick P.L. // Nat. Rev. Neurosci. 2018. V. 19. № 6. P. 338–350.
  39. Accolla E.A., Herrojo Ruiz M., Horn A., Schneider G.H., Schmitz-Hubsch T., Draganski B., Kuhn A.A. // Brain. 2016. V. 139. Pt. 9. P. 2503–2515.
  40. Haynes W.I.A., Haber S.N. // J. Neurosci. 2013. V. 33. № 11. P. 4804–4814.
  41. Силькис И.Г. // Успехи физиол. наук. 2005. Т. 36. № 2. С. 66–83.
  42. Santos-Terra J., Deckmann I., Schwingel G.B., Paz A.V.C., Gama C.S., Bambini-Junior V., Fontes-Dutra M., Gottfried C. // Brain Res. 2021. V. 1768. P. 147593.
  43. Nardi L., Chhabra S., Leukel P., Krueger-Burg D., Sommer C.J., Schmeisser M.J. // Front. Psychiatry. 2023. V. 14. P. 199097.
  44. Chen J., Ma X.L., Zhao H., Wang X.Y., Xu M.X., Wang H., Yang T.Q., Peng C., Liu S.S., Huang M., Zhou Y.D., Shen Y. // Glia. 2022. V. 70. № 1. P. 106–122.
  45. Baron-Mendoza I., Maqueda-Martinez E., Martinez-Marcial M., De la Fuente-Granada M., Gomez-Chavarin M., Gonzalez-Arenas A. // Front Cell Neurosci. 2021 Sep 20;15:726501.
  46. Силькис И.Г. // Успехи физиол. наук. 2002. 33. № 1. P. 40–56.
  47. Silkis I. // Biosystems. 2000. V. 57. № 3. P. 187–196.
  48. Silkis I. // Biosystems. 2001. V. 59. № 1. P. 7–14.
  49. Maurice N., Deniau J.M., Glowinski J., Thierry A.M. // J. Neurosci. 1998. V. 18. № 22. P. 9539–9546.
  50. Robledo P., Feger J. // Brain Res. 1990. V. 518. № 1–2. P. 47–54.
  51. Sesack S.R., Snyder C.L., Lewis D.A. // J. Comp. Neurol. 1995. V. 363. № 2. P. 264–280.
  52. Zheng P., Zhang X.X., Bunney B.S., Shi W.X. // Neuroscience. 1999. V. 91. № 2. P. 527–535.
  53. Huda K., Salunga T.L., Matsunami K. // Neurosci. Lett. 2001. V. 307. № 3. P. 175–178.
  54. Brozka H., Alexova D., Radostova D., Janikova M., Krajcovic B., Kubik Š., Svoboda J., Stuchlik A. // Biomolecules. 2021. V. 11. № 1. P. 84.
  55. Huang Y.Y., Kandel E.R. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. № 7. P. 2446–2450.
  56. Orieux G., Francois C., Feger J., Orieux G., Francois C., Feger J., Yelnik J., Vila M., Levy R., Tolosa E.S., Marin C., Trinidad Herrero M., Obeso J.A., Agid Y. // Neuroscience. 2000. V. 97. № 1. P. 79–88.
  57. Parent A., Hazrati L.N. // Brain Res.Rev. 1995. V. 20. № 1. P. 128–154.
  58. Hassani O.K., Francois C., Yelnik J., Feger J. // Brain Res. 1997. V. 749. № 1. P. 88–94.
  59. Prensa L., Cossette M., Parent A. // J. Chem. Neuroanat. 2000. V. 20. № 3–4. P. 207–213.
  60. Flores G., Liang J.J., Sierra A.. Martinez-Fong D., Quirion R., Aceves J., Srivastava L.K. // Neuroscience. 1999. V. 91. № 2. P. 549–556.
  61. Smith Y., Kieval J.Z. // // Trends Neurosci. 2000. V. 23. № 10. Suppl. P. S28–S33.
  62. Baufreton J., Garret M., Rivera A., Rivera A., de la Calle A., Gonon F., Dufy B., Bioulac B., Taupignon A. // J. Neurosci. 2003. V. 23. № 3. P. 816–825.
  63. Zhu Z., Bartol M., Shen K., Johnson S.W. // Brain Res. 2002. V. 945. № 1. P. 31–40.
  64. Ni Z., Gao D., Bouali-Benazzouz R., Benabid A.L., Benazzouz A. // Eur. J. Neurosci. 2001. V. 14. № 2. P. 373–381.
  65. Силькис И.Г. // Интегр. физиол. 2021. Т.2. № 2. C. 135–146.
  66. Kim H., Kim T-K., Kim J-E., Park J-Y., Lee Y., Kang M., Kim K-S., Han P-L. // Mol. Brain 2014. V. 7. P. 77.
  67. Kim H., Lee Y., Kim J-E., Han P-L. // Exp. Neurobiol. 2016. V. 25. P. 79–85.
  68. Bouchekioua Y., Tsutsui-Kimura I., Sano H., Koizumi M., Tanaka K.F., Yoshida K., Kosaki Y., Watanabe S., Mimura M. // Neurosci. Res. 2018. V.132. P. 53–57.
  69. Tecuapetla F., Jin X., Lima S.Q., Costa R.M. // Cell. 2016. V. 166. P. 703–715.
  70. Presti M.F., Mikes H.M., Lewis M.H. // Pharmacol. Biochem. Behav. 2003. V. 74. № 4. P. 833–839.
  71. Urbano M., Okwara L.m Manser P., Hartmann K., Herndon A., Deutsch S.I. // Clin. Neuropharmacol. 2014, V. 37. P. 69.
  72. Taylor J.L, Rajbhandari A.K., Berridge K.C., Aldridge J.W. // Brain Res. 2010. V. 1322. P. 92–101.
  73. Mandic-Maravic V., Grujicic R., Milutinovic L., Munjiza-Jovanovic A., Pejovic-Milovancevic M. // Front. Psychiatry. 2022. V. 12. P. 787097.
  74. Venkatachalam K., Eissa N., Awad M.A., Jayaprakash P., Zhong S., Stolting F., Stark H., Sadek B. // Biomed. Pharmacother. 2021. V. 138. P. 111517.
  75. Marquez-Gomez R., Robins M.T., Gutierrez-Rodelo C., Arias J.M., Olivares-Reyes J.A., van Rijn R.M., Arias-Montano J.A. // Pharmacol Res. 2018. V. 129. P. 515–525.
  76. Doreulee N., Yanovsky Y., Flagmeyer I., Stevens D.R., Haas H.L., Brown R.E. // Neuropharmacology. 2001. V. 40. № 1. P. 106–113.
  77. Parr-Brownlie L.C., Hyland B.I. // J. Neurosci. 2005. V. 25. № 24. P. 5700–5709.
  78. Wang W., Li C., Chen Q., van der Goes M-S., Hawrot J., Yao A.Y., Gao X., Lu C., Zang Y., Zhang Q., Lyman K., Wang D., Guo B., Wu S., Gerfen C.R., Fu Z., Feng G. // J. Clin. Invest. 2017. V. 127. P. 1978–1990.
  79. Muehlmann A.M., Maletz S., King M.A., Lewis M.H. // Behav. Brain Res. 2020. V. 391. P. 112708.
  80. Guo M., Xie P., Liu S., Luan G., Li T. // Curr. Neuropharmacol. 2023. V. 21. № 1. P. 54–66.
  81. Amodeo D.A., Cuevas L., Dunn J.T., Sweeney J.A., Ragozzino M.E. // Autism Res. 2018, V. 11. P. 223–233.
  82. Lewis M.H., Rajpal H., Muehlmann A.M. // Pharmacol. Biochem. Behav 2019. V. 181. P. 110–116.
  83. Pasquini S., Contri C., Merighi S., Gessi S., Borea P.A., Varani K., Vincenzi F. // Int. J. Mol. Sci. 2022. V. 23. № 3. P. 1219.
  84. Lee Y., Kim H., Kim J.-E., Park J-Y., Choi J., Lee J-E., Lee E-H., Han P-L. // Behaviors. Mol. Neurobiol. 2018. V. 55. P. 5658–5671.
  85. Wang M., Li Z., Song Y., Sun Q., Deng L., Lin Z., Zeng Y., Qiu C., Lin J., Guo H., Chen J., Guo W. // Front Neuroanat. 2022 Aug 18;16:978641.
  86. Hogan Y.H., Hawkins R., Alkadhi K.A. // Brain Res. 1998. V. 807. № 1–2. P. 19–28.
  87. Huang C.-C., Liang Y.-C., Hsu K.-S. // J. Neurosci. 1999. V. 19. № 22. P. 9728–9738.
  88. Bannon N.M., Zhang P., Ilin V., Chistiakova M., Volgushev M. // Neuroscience. 2014. V. 260. P. 171–184.
  89. Jin C.Y., Anichtchik O., Panula P. // Br. J. Pharmacol. 2009. V. 157. № 1. P. 118–129.
  90. Baronio D., Castro K., Gonchoroski T., de Melo G.M., Nunes G.D., Bambini-Junior V., Gottfried C, Riesgo R. // PLoS One. 2015. V. 10. № 1. P. e0116363.
  91. Taheri F., Esmaeilpour K., Sepehri G., Sheibani V., Ur Rehman N., Maneshian M. // Psychopharmacology (Berl). 2022. V. 239. № 8. P. 2673–2693.
  92. Zou M., Liu Y., Xie S., Wang L., Li D., Li L., Wang F., Zhang Y., Xia W., Sun C., Wu L. // Open Biol. 2021. V. 11. № 2. P. 200306.
  93. Shonesy B.C., Parrish W.P., Haddad H.K., Stephenson J.R., Baldi R., Bluett R.J., Marks C.R., Centanni S.W., Folkes O.M., Spiess K., Augustin S.M., Mackie K., Lovinger D.M., Winder D.G., Patel S., Colbran R.J. // Biol. Psychiatry. 2018. V. 84. № 4. P. 304–315.
  94. Martin A.B., Fernandez-Espejo E., Ferrer B., Gorriti M.A., Bilbao A., Navarro M., Rodriguez de Fonseca F., Moratalla R. // Neuropsychopharma cology. 2008. V. 33. № 7. P. 1667–1679.
  95. Andre V.M., Cepeda C., Cummings D.M., Jocoy E.L., Fisher Y.E., William Yang X., Levine M.S. // Eur. J. Neurosci. 2010. V. 31. № 1. P. 14–28.
  96. Ferrer B., Gorriti M.A., Palomino A., Gornemann I., de Diego Y., Bermudez-Silva F.J., Bilbao A, Fernandez-Espejo E., Moratalla R., Navarro M., Rodriguez de Fonseca F. // Eur. J. Pharmacol. 2007. V. 559. № 2–3. P. 180–183.
  97. Silva E.A.D. Junior., Medeiros W.M.B., Torro N., Sousa J.M.M., Almeida I.B.C.M., Costa F.B.D., Pontes K.M., Nunes E.L.G., Rosa M.D.D., Albuquerque K.G.D. // Trends Psychiatry Psychother. 2022. V. 44. P. e20200149.
  98. Silva E.A.D. Junior, Medeiros W.M.B., Santos J.P.M.D., Sousa J.M.M., Costa F.B.D., Pontes K.M., Borges T.C., Espinola C. Neto Segundo., Andrade E., Silva A.H., Nunes E.L.G., Alves N.T., Rosa M.D.D., Albuquerque K.L.G.D. // Trends Psychiatry Psychother. 2024. V. 46. P. e20210396.
  99. Baribeau D., Vorstman J., Anagnostou E. // Curr Opin Psychiatry. 2022. V. 35. № 2. P. 101–110.
  100. Pedrazzi J.F.C., Ferreira F.R., Silva-Amaral D., Lima D.A., Hallak J.E.C., Zuardi A.W., Del-Bel E.A., Guimaraes F.S., Costa K.C.M., Campos A.C., Crippa A.C.S., Crippa J.A.S. // Psychopharmacology (Berl). 2022. V. 239. № 9. P. 2713–2734.
  101. Dias-de Freitas F., Pimenta S., Soares S., Gonzaga D., Vaz-Matos I., Prior C. // Rev. Neurol. 2022. V. 75. № 7. P. 189–197.
  102. Gabriels R.L., Agnew J.A., Pan Z., Holt K.D., Reynolds A, Laudenslager ML. // Biol. Psychol. 2013. V. 93. № 2. P. 262–268.
  103. Simon D.M., Corbett B.A. // J. Neurodev. Disord. 2013. V. 5. № 1. P. 32.
  104. Gao J., Zou J., Yang L., Zhao J., Wang L., Liu T., Fan X. // Front. Psychiatry. 2022. V. 13. P. 928188.
  105. Nakamura M., Nakagami A., Nakagaki K., Yasue M., Kawai N., Ichinohe N. // Front. Behav. Neurosci. 2022. V. 16. P. 943759.
  106. Bitsika V., Sharpley C.F., Agnew L.L., Andronicos N.M. // Physiol. Behav. 2015. V. 152 (Pt. A). P. 238–243.
  107. Ohtsubo T., Mizoguchi Y., Aita C., Imamura Y., Kobayashi M., Kunitake Y., Tateishi H., Ueno T., Monji A. // Sci. Rep. 2024. V. 14. № 1. P. 7139.
  108. Numachi Y., Yoshida S., Toda S., Matsuoka H., Sato M. // Ann. NY. Acad. Sci. 2000. V. 914. P. 33–45.
  109. Wirz L., Reuter M., Wacker J., Felten A., Schwabe L. // eNeuro. 2017. V. 4. № 6. ENEURO.0359-17.2017.
  110. Christ M., Wehling M., Kirsch E., Viengchareun S., Zennaro M.C., Lombes M. // Mol. Cell Endocrinol. 2005. V. 231. № 1–2. P. 23–31.
  111. Alfarez D.N., Wiegert O., Joels M., Krugers H.J. // Neuroscience. 2002. V. 115. № 4. P. 1119–1126.
  112. Yang C.H., Huang C.C., Hsu K.S. // J. Neurosci. 2005. V. 25. № 17. P. 4288–4293.
  113. Pavlides C., Watanabe Y., Magarinos A.M., McEwen B.S. // Neuroscience. 1995. V. 68. № 2. P. 387–394.
  114. Payne J.D., Nadel L. // Learn. Mem. 2004. V. 11. № 6. P. 671–678.
  115. Piechota M., Korostynski M., Golda S., Ficek J., Jantas D., Barbara Z., Przewlocki R. // BMC Neurosci. 2017. V. 18. № 1. P. 37.
  116. Clark P.J., Ghasem P.R., Mika A., Day H.E., Herrera J.J., Greenwood B.N., Fleshner M. // Behav. Brain Res. 2014. V. 272. P. 252–263.
  117. Peng B., Xu Q., Liu J., Guo S., Borgland S.L., Liu S. // J. Neurosci. 2021. V. 41. № 7. P. 1566–1581.
  118. McBride S.D., Parker M.O. // Behav. Brain Res. 2015. V. 276. P. 45–58.
  119. Rouge-Pont F., Abrous D.N., Le Moal M., Piazza P.V. // Eur. J. Neurosci. 1999. V. 11. № 7. P. 2343–2350.
  120. Griffioen R.E., van Boxtel G.J.M., Verheggen T., Enders-Slegers M.J., Van Der Steen S. // Children (Basel). 2023. V. 10. № 7. P. 1200.
  121. Viau R., Arsenault-Lapierre G., Fecteau S, Champagne N., Walker C.D., Lupien S. // Psychoneuroendocrinology. 2010. V. 35. № 8. P. 1187–1193.
  122. Bitsika V., Sharpley C.F., McMillan M.E., Agnew L.L. // Int. J. Dev. Neurosci. 2018. V. 71. P. 52–60.
  123. Dabbah-Assadi F., Handel R., Shamir A. // J. Psychiatr. Res. 2022. V. 155. P. 363–370.
  124. Drozdowicz L.B., Bostwick J.M. // Mayo Clin. Proc. 2014. V. 89. № 6. P. 817–834.
  125. Kusljic S., Manias E., Gogos A. // Res. Social. Adm. Pharm. 2016. V. 12. № 2. P. 5–360.
  126. Grossberg S., Kishnan D. // Front. Psychol. 2018. V. 9. P. 269.
  127. Силькис И.Г. // Нейрохимия. 2013. T. 30. № 4. C. 305–313.
  128. Strange B.A., Witter M.P., Lein E.S., Moser E.I. // Nat. Rev. Neurosci. 2014. V.15. № 10. P. 655–669.
  129. Aggleton J.P., O’Mara S.M., Vann S.D., Wright N.F., Tsanov M, Erichsen J.T. // Eur. J. Neurosci. 2010. V. 31. № 12. P. 292–307.
  130. Floresco S.B., Todd C.L., Grace A.A. // J. Neurosci. 2001. V. 21. № 13. P. 915–922.
  131. Hanley G.P., Iwata B.A., Thompson R.H., Lindberg J.S. // J. Appl. Behav. 2000. V. 33. № 3. P. 285–297.
  132. Kohls G., Yerys B.E., Schultz R.T. // Biol. Psychiatry. 2014. V. 76. № 5. P. 358–359.
  133. Силькис И.Г. // Журн. высш. нерв. деят. 2014. Т. 64. № 1. С. 1–19.
  134. Trujillo Villarreal LA., Cardenas-Tueme M., Maldonado-Ruiz R., Resendez-Perez D., Camacho-Morales A. // J. Neurochem. 2021. V. 156. № 4. P. 415–434.
  135. Requejo-Mendoza N., Arias-Montano J.A., Gutierrez R. // PLoS One. 2025. V.20. № 2. P. e0317605.
  136. Sellick T., Ure A., Williams K. // Syst. Rev. 2021. V. 10. № 1. P. 303.
  137. Crittenden J.R., Gipson T.A., Smith A.C., Bowden H.A., Yildirim F., Fischer K.B., Yim M., Housman D.E., Graybiel A.M. // Eur. J. Neurosci. 2021. V. 53. № 8. P. 2450–2468.
  138. Elliott S.J., Marshall D., Morley K., Uphoff E., Kumar M., Meader N. // Cochrane Database Syst. Rev. 2021. V. 9. № 9. P. CD013173.
  139. Fulceri F., Narzisi A., Apicella F., Balboni G., Baldini S., Brocchini J., Domenici I., Cerullo S., Igliozzi R., Cosenza A., Tancredi R., Muratori F., Calderoni S. // Res. Dev. Disabil. 2016. V. 48. P. 43–52.
  140. Kosillo P., Bateup H.S. // Front. Neural Circuits. 2021. V. 15. P. 700968.
  141. Cai R.Y., Richdale A.L., Uljarević M., Dissanayake C., Samson A.C. // Autism Res. 2018 V. 11. № 7. P. 962–978.
  142. Northrup JB, Patterson MT, Mazefsky CA. // J. Clin. Child Adolesc. Psychol. 2021. V. 50. № 6. P. 708–729.
  143. Martinez-Gonzalez A.E., Cervin M., Piqueras J.A. // J. Autism Dev. Disord. 2022. V.52. № 10. P. 4519–4527.
  144. Tsai C.H., Chen K.L., Li H.J., Chen K.H., Hsu C.W., Lu C.H., Hsieh K.Y., Huang C.Y. // Sci. Rep. 2020. V. 10. № 1. P. 20509.
  145. Annamneedi A., Gora C., Dudas A., Leray X., Bozon V., Crepieux P., Pellissier LP. // Br. J. Pharmacol. 2025. V. 182. № 14. P. 3044–3067.
  146. Силькис И.Г. // Нейрохимия. 2024. Т. 41. № 1. С. 60–75.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».