Существует ли анти-NMDA-рецепторный энцефалит? I. Проблемы диагностики

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основании комплексного анализа результатов клинических, нейрофизиологических, нейроиммунологических, нейробиологических и патологоанатомических исследований авторы обзора подвергают сомнению состоятельность концепции анти-NMDA-рецепторного энцефалита. Подчёркиваются важность изучения саногенетических механизмов в медицине и опасность поспешных интерпретаций нейробиологических данных в отрыве от клинических знаний.

Об авторах

Евгений Владимирович Снедков

Психиатрическая больница св. Николая Чудотворца

Email: esnedkov@mail.ru
ORCID iD: 0000-0002-1438-1890
SPIN-код: 4353-6428

докт. мед. наук, проф., врач-психиатр

Россия, Санкт-Петербург

Игорь Анатольевич Волчек

Российский биотехнологический университет; Научно-исследовательский центр иммунологии и аллергологии

Email: igor.volchek@gmail.com
ORCID iD: 0009-0000-1451-6145
SPIN-код: 6743-2105

докт. мед. наук, проф. кафедры кожных и венерических болезней с курсом косметологии Медицинского института непрерывного образования «РОСБИОТЕХ»; главный научный сотрудник научно-исследовательского центра иммунологии и аллергологии

Россия, Москва; Москва

Илья Владимирович Лемешев

Психиатрическая больница св. Николая Чудотворца; Северо-Западный государственный медицинский университет им. И.И. Мечникова

Автор, ответственный за переписку.
Email: ilya.lemeshev@gmail.com
ORCID iD: 0009-0002-0491-6545
SPIN-код: 7635-4548

заведующий дневным стационаром, врач-психиатр; ассистент кафедры психиатрии и наркологии

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Bell L. On a form of disease resembling some advanced stages of mania and fever, but so contradistinguished from any ordinary observed or described combination of symptoms as to render it probable that it may be overlooked and hitherto unrecorded malady // Am. J. Insanity. 1849. Vol. 6. N. 2. P. 97–127.
  2. Леонгард К. Систематика эндогенных психозов и их дифференцированная этиология. Пер. с нем. под ред. А.С. Тиганова. М.: Практическая медицина; 2010. 456 с.
  3. Kleist K. Die klinische Stellung der Motilitatspsychoden // Zeitschrift fur die gesamte Neurologie und Psychiatrie, Referate und Ergebnisse. 1911. Vol. 3. P. 914–917.
  4. Franzek E., Beckmann H. Season-of-birth effect reveals the existence of etiologically different groups of schizophrenia // Biological Psychiatry. 1992. Vol. 32. N. 4. P. 375–378. doi: 10.1016/0006-3223(92)90042-x.
  5. Stöber G., Franzek E., Beckmann H. The role of maternal infectious diseases during pregnancy in the etiology of schizophrenia in offspring // European Psychiatry. 1992. Vol. 7. N. 4. P. 147–152. doi: 10.1017/S0924933800005241.
  6. Stöber G., Kocher I., Franzek E. et al. First-trimester maternal gestational infection and cycloid psychosis // Acta Psychiatrica Scandinavica. 1997. Vol. 96. N. 5. P. 319–324. doi: 10.1111/j.1600-0447.1997.tb09923.x.
  7. Al-Haddad B.J., Oler E., Armistead B. et al. The fetal origins of mental illness // American Journal of Obstetrics and Gynecology. 2019. Vol. 221. N. 6. P. 549–562. doi: 10.1016/j.ajog.2019.06.013.
  8. Massrali A., Adhya D., Srivastava D.P. et al. Virus-induced maternal immune activation as an environmental factor in the etiology of autism and schizophrenia // Frontiers in Neuroscience. 2022. Vol. 16. P. 834058. doi: 10.3389/fnins.2022.834058.
  9. Ratnayake U., Quinn T., Walker D.W. et al. Cytokines and the neurodevelopmental basis of mental illness // Frontiers in Neuroscience. 2013. Vol. 7. P. 180. doi: 10.3389/fnins.2013.00180.
  10. Vasistha N.A., Pardo-Navarro M., Gasthaus J. et al. Maternal inflammation has a profound effect on cortical interneuron deve-lopment in a stage and subtype-specific manner // Molecular Psychiatry. 2020. Vol. 25. N. 10. P. 2313–2329. doi: 10.1038/s41380-019-0539-5.
  11. Seckl J.R., Holmes M.C. Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal programming of adult pathophysiology // Nature Clinical Practice Endocrinology & Metabolism. 2007. Vol. 3. N. 6. P. 479–488. doi: 10.1038/ncpendmet0515.
  12. Lee Y.H., Cherkerzian S., Seidman L.J. et al. Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: Variation by severity of infection and offspring sex // American Journal of Psychiatry. 2020. Vol. 177. N. 1. P. 66–75. doi: 10.1176/appi.ajp.2019.18101206.
  13. Allswede D.M., Yolken R.H., Buka S.L. et al. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: A longitudinal case-control study // The Lancet Psychiatry. 2020. Vol. 7. N. 3. P. 254–261. doi: 10.1016/S2215-0366(20)30006-7.
  14. Cheslack-Postava K., Brown A.S. Prenatal infection and schizophrenia: A decade of further progress // Schizophrenia Research. 2022. Vol. 247. P. 7–15. doi: 10.1016/j.schres.2021.05.014.
  15. Malhotra S., Sahoo S., Balachander S. Acute and transient psychotic disorders: Newer understanding // Current Psychiatry Reports. 2019. Vol. 21. P. 1–11. doi: 10.1007/s11920-019-1099-8.
  16. Dalmau J., Armangué T., Planagumà J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: Mechanisms and models // The Lancet Neurology. 2019. Vol. 18. N. 11. P. 1045–1057. doi: 10.1016/S1474-4422(19)30244-3.
  17. Davies C., Segre G., Estradé A. et al. Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis // The Lancet Psychiatry. 2020. Vol. 7. N. 5. P. 399–410. doi: 10.1016/S2215-0366(20)30057-2.
  18. Zimmer A., Youngblood A., Adnane A. et al. Prenatal exposure to viral infection and neuropsychiatric disorders in offspring: A review of the literature and recommendations for the COVID-19 pandemic // Brain, Behavior, and Immunity. 2021. Vol. 91. P. 756–770. doi: 10.1016/j.bbi.2020.10.024.
  19. Hansen N., Luedecke D., Malchow B. et al. Autoantibody-associated psychiatric syndromes in children: Link to adult psychiatry // Journal of Neural Transmission. 2021. Vol. 128. N. 6. P. 735–747. doi: 10.1007/s00702-021-02354-8.
  20. Pröbstel A.K., Zamvil S.S. Do maternal anti-N-methyl-D-aspartate receptor antibodies promote development of neuropsychiatric disease in children? // Annals of Neurology. 2019. Vol. 86. N. 5. P. 653. doi: 10.1002/ana.25584.
  21. Цахилова P.Г., Кузнецов В.П., Хмельницкая А.В. и др. Влияние иммунного статуса матери на развитие плода и здоровье новорождённого (обзор литературы) // Проблемы репродукции. 2016. Т. 22. №6. C. 38–43. doi: 10.17116/repro201622638-43.
  22. Prüss H. Autoantibodies in neurological disease // Nature Reviews Immunology. 2021. Vol. 21. N. 12. P. 798–813. doi: 10.1038/s41577-021-00543-w.
  23. Ehrenreich H. Autoantibodies against N-methyl-D-aspartate receptor 1 in health and disease // Current Opinion in Neurology. 2018. Vol. 31. N. 3. P. 306. doi: 10.1097/WCO.0000000000000546.
  24. Gastaldi V.D., Wilke J.B., Weidinger C.A. et al. Factors predisposing to humoral autoimmunity against brain-antigens in health and disease: Analysis of 49 autoantibodies in over 7000 subjects // Brain, Behavior, and Immunity. 2023. Vol. 108. P. 135–147. doi: 10.1016/j.bbi.2022.10.016.
  25. Hansen N. NMDAR autoantibodies in psychiatric disease — an immunopsychiatric continuum and potential predisposition for disease pathogenesis // Journal of Translational Autoimmunity. 2022. Vol. 25. P. 100165. doi: 10.1016/j.jtauto.2022.100165.
  26. Wilke J.B., Hindermann M., Berghoff S.A. et al. Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis // Molecular Psychiatry. 2021. Vol. 26. N. 12. P. 7746–7759. doi: 10.1038/s41380-021-01238-3.
  27. Dahm L., Ott C., Steiner J. et al. Seroprevalence of autoantibodies against brain antigens in health and disease // Annals of Neurology. 2014. Vol. 76. N. 1. P. 82–94. doi: 10.1002/ana.24189.
  28. Ehrenreich H. Autoantibodies against the N-methyl-D-aspartate receptor subunit NR1: Untangling apparent inconsistencies for clinical practice // Frontiers in Immunology. 2017. Vol. 8. P. 181. doi: 10.3389/fimmu.2017.00181.
  29. Hopfner F., Müller S.H., Steppat D. et al. No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors // Translational Neurodegeneration. 2019. Vol. 8. P. 1–7. doi: 10.1186/s40035-019-0153-0.
  30. Pan H., Oliveira B., Saher G. et al. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model // Molecular Psychiatry. 2019. Vol. 24. N. 10. P. 1489–1501. doi: 10.1038/s41380-017-0011-3.
  31. Pan H., Steixner-Kumar A.A., Seelbach A. et al. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: A translational study from chronic life stress to brain injury // Molecular Psychiatry. 2021. Vol. 26. N. 6. P. 2471–2482. doi: 10.1038/s41380-020-0672-1.
  32. Pollak T.A., Kempton M.J., Iyegbe C. et al. Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis // Molecular Psychiatry. 2021. Vol. 26. N. 6. P. 2590–2604. doi: 10.1038/s41380-020-00899-w.
  33. Lennox B.R., Palmer-Cooper E.C., Pollak T. et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case-control study // The Lancet Psychiatry. 2017. Vol. 4. N. 1. P. 42–48. doi: 10.1016/S2215-0366(16)30375-3.
  34. Dalmau J., Tüzün E., Wu H. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma // Annals of Neurology. 2007. Vol. 61. N. 1. P. 25–36. doi: 10.1002/ana.21050.
  35. Vitaliani R., Mason W., Ances B. et al. Paraneoplastic encepha-litis, psychiatric symptoms, and hypoventilation in ovarian teratoma // Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2005. Vol. 58. N. 4. P. 594–604. doi: 10.1002/ana.20614.
  36. Dalmau J., Lancaster E., Martinez-Hernandez E. et al. Clini-cal experience and laboratory investigations in patients with anti-NMDAR encephalitis // The Lancet Neurology. 2011. Vol. 10. N. 1. P. 63–74. doi: 10.1016/S1474-4422(10)70253-2.
  37. Gabilondo I., Saiz A., Galán L. et al. Analysis of relapses in anti-NMDAR encephalitis // Neurology. 2011. Vol. 77. N. 10. P. 996–999. doi: 10.1212/WNL.0b013e31822cfc6b.
  38. Armangue T., Spatola M., Vlagea A. et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis // The Lancet Neurology. 2018. Vol. 17. N. 9. P. 760–772. doi: 10.1016/S1474-4422(18)30244-8.
  39. Phillips O., Tubre T., Lorenco H. et al. Limbic encephalitis in a child with ovarian teratoma and influenza B. Case report and critical review of the history of autoimmune anti-N-methyl-D-aspartate receptor encephalitis // Journal of Neuroimmunology. 2021. Vol. 360. P. 577716. doi: 10.1016/j.jneuroim.2021.577716.
  40. Nabizadeh F., Balabandian M., Sodeifian F. et al. Autoimmune encephalitis associated with COVID-19: A systematic review // Multiple Sclerosis and Related Disorders. 2022. Vol. 62. P. 103795. doi: 10.1016/j.msard.2022.103795.
  41. Samim M.M., Dhar D., Goyal S. et al. AI-CoV Study: Autoimmune encephalitis associated with COVID-19 and its vaccines — A systematic review // Journal of Clinical Neurology (Seoul, Korea). 2022. Vol. 18. N. 6. P. 692. doi: 10.3988/jcn.2022.18.6.692.
  42. Martin S., Azzouz B., Morel A. et al. Anti-NMDA receptor encephalitis and vaccination: A disproportionality analysis // Frontiers in Pharmacology. 2022. Vol. 13. P. 940780. doi: 10.3389/fphar.2022.940780.
  43. Valdoleiros S.R., Calejo M., Marinho A. et al. First report of concomitant cryptococcal meningitis and anti-NMDAR encephalitis // Brain, Behavior & Immunity-Health. 2020. Vol. 2. P. 100036. doi: 10.1016/j.bbih.2020.100036.
  44. Zrzavy T., Endmayr V., Bauer J. et al. Neuropathological variability within a spectrum of NMDAR-encephalitis // Annals of Neurology. 2021. Vol. 90. N. 5. P. 725–737. doi: 10.1002/ana.26223.
  45. Doden T., Sekijima Y., Ikeda J. et al. Postpartum anti-N-methyl-D-aspartate receptor encephalitis: A case report and lite-rature review // Internal Medicine. 2017. Vol. 56. N. 3. P. 357–362. doi: 10.2169/internalmedicine.56.7442.
  46. Konen F.F., Schwenkenbecher P., Jendretzky K.F. et al. Severe anti-N-methyl-D-aspartate receptor encephalitis under immunosuppression after liver transplantation // Frontiers in Neurology. 2019. Vol. 10. P. 987. doi: 10.3389/fneur.2019.00987.
  47. Obi C.A., Thompson E., Mordukhaev L. et al. Anti-N-methyl-D-aspartate receptor encephalitis triggered by emotional stress // Baylor University Medical Center Proceedings. Taylor & Francis, 2019. Vol. 32. N. 4. P. 605–606. doi: 10.1080/08998280.2019.1647713.
  48. Auriti C., De Rose D.U., Santisi A. et al. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus // Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2021. Vol. 1867. N. 10. P. 166198. doi: 10.1016/j.bbadis.2021.166198.
  49. Teller J., Jung C., Wilke J.B. et al. Autoantibodies against NMDAR subunit NR1 disappear from blood upon anesthesia // Brain, Behavior & Immunity-Health. 2022. Vol. 24. P. 100494. doi: 10.1016/j.bbih.2022.100494.
  50. Kayser M.S., Titulaer M.J., Gresa-Arribas N. et al. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis // JAMA Neurology. 2013. Vol. 70. N. 9. P. 1133–1139. doi: 10.1001/jamaneurol.2013.3216.
  51. Wu C.Y., Wu J.D., Chen C.C. The association of ovarian teratoma and Anti-N-Methyl-D-Aspartate receptor encephalitis: An updated integrative review // International Journal of Mole-cular Sciences. 2021. Vol. 22. N. 20. P. 10911. doi: 10.3390/ijms222010911.
  52. Васенина Е.Е., Левин О.P., Ганькина О.А. и др. Аутоиммунный энцефалит с антителами к NMDA-рецепторам // Журнал неврологии и психиатрии. 2017. T. 117. №2. C. 110–116. doi: 10.17116/jnevro201711721110-116.
  53. Шмуклер А.Б., Ивашкина А.А., Мурашко А.А. Случай анти-NMDA-рецепторного энцефалита с клинической картиной фебрильной кататонии // Бюллетень сибирской медицины. 2019. T. 18. №4. C. 266–272. doi: 10.20538/1682-0363-2019-4-266-272.
  54. Giné Servén E., Boix Quintana E., Martínez Ramírez M. et al. Cycloid psychosis as a psychiatric expression of anti-NMDAR encephalitis. A systematic review of case reports accomplished with the authors’ cooperation // Brain and Behavior. 2021. Vol. 11. N. 2. P. e01980. doi: 10.1002/brb3.1980.
  55. Komagamine T., Kanbayashi T., Suzuki K. et al. “Atypical psychoses” and anti-NMDA receptor encephalitis: A review of literature in the mid-twentieth century // Psychiatry and Cli-nical Neurosciences. 2022. Vol. 76. N. 2. P. 62. doi: 10.1111/pcn.13317.
  56. Foucher J.R., Bartsch A.J., Mainberger O. et al. Parakinesia: A Delphi consensus report // Schizophrenia Research. 2022. Р. S0920-9964(22)00366-8. doi: 10.1016/j.schres.2022.09.024.
  57. Giné Servén E., Boix Quintana E., Guanyabens Buscà N. et al. Considerations of psychotic symptomatology in anti-NMDA encephalitis: Similarity to cycloid psychosis // Clinical Case Reports. 2019. Vol. 7. N. 12. P. 2456–2461. doi: 10.1002/ccr3.2522.
  58. Warren N., O’Gorman C., McKeon G. et al. Psychiatric management of anti-NMDAR encephalitis: A cohort analysis // Psychological Medicine. 2021. Vol. 51. N. 3. P. 435–440. doi: 10.1017/S0033291719003283.
  59. McKeon G.L., Robinson G.A., Ryan A.E. et al. Cognitive outcomes following anti-N-methyl-D-aspartate receptor encephalitis: A systematic review // Journal of Clinical and Experimental Neuropsychology. 2018. Vol. 40. N. 3. P. 234–252. doi: 10.1080/13803395.2017.1329408.
  60. Flanagan E.P., Geschwind M.D., Lopez-Chiriboga A.S. et al. Autoimmune encephalitis misdiagnosis in adults // JAMA Neurology. 2023. Vol. 80. N. 1. P. 30–39. doi: 10.1001/jamaneurol.2022.4251.
  61. Hébert J., Muccilli A., Wennberg R.A. et al. Autoimmune encephalitis and autoantibodies: A review of clinical implications // The Journal of Applied Laboratory Medicine. 2022. Vol. 7. N. 1. P. 81–98. doi: 10.1093/jalm/jfab102.
  62. Lee S., Kim H.D., Lee J.S. et al. Clinical features and treatment outcomes of seronegative pediatric autoimmune encephalitis // Journal of Clinical Neurology (Seoul, Korea). 2021. Vol. 17. N. 2. P. 300. doi: 10.3988/jcn.2021.17.2.300.
  63. Hayashi K., Hikiji W., Makino Y. et al. An autopsy case of suspected anti-N-methyl-D-aspartate receptor encephalitis // Journal of Forensic Science and Medicine. 2019. Vol. 5. N. 4. P. 213–216. doi: 10.4103/jfsm.jfsm_59_18.
  64. Tüzün E., Zhou L., Baehring J.M. et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma // Acta Neuropathologica. 2009. Vol. 118. P. 737–743. doi: 10.1007/s00401-009-0582-4.
  65. Dao L.M., Machule M.L., Bacher P. et al. Decreased inflammatory cytokine production of antigen-specific CD4+ T cells in NMDA receptor encephalitis // Journal of Neurology. 2021. Vol. 268. P. 2123–2131. doi: 10.1007/s00415-020-10371-y.
  66. Gillinder L., Warren N., Hartel G. et al. EEG findings in NMDA encephalitis — a systematic review // Seizure. 2019. Vol. 65. P. 20–24. doi: 10.1016/j.seizure.2018.12.015.
  67. Faraguna U., Vyazovskiy V.V., Nelson A.B. et al. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep // Journal of Neuroscience. 2008. Vol. 28. N. 15. P. 4088–4095. doi: 10.1523/JNEUROSCI.5510-07.2008.
  68. Harmony T. The functional significance of delta oscillations in cognitive processing // Frontiers in Integrative Neuroscience. 2013. Vol. 7. P. 83. doi: 10.3389/fninVol.2013.00083.
  69. Steriade M., McCormick D.A., Sejnowski T.J. Thalamocortical oscillations in the sleeping and aroused brain // Science. 1993. Vol. 262. N. 5134. P. 679–685. doi: 10.1126/science.8235588.
  70. Nabizadeh F., Ramezannezhad E., Sardaripour A. et al. [18F] FDG brain PET and clinical symptoms in different autoantibodies of autoimmune encephalitis: A systematic review // Neurological Sciences. 2022. Vol. 43. N. 8. P. 4701–4718. doi: 10.1007/s10072-022-06094-9.
  71. Jabs B.E., Pfuhlmann B., Bartsch A.J. et al. Cycloid psychoses — from clinical concepts to biological foundations // Journal of Neural Transmission. 2002. Vol. 109. P. 907–919. doi: 10.1007/s007020200074.
  72. Martinez-Hernandez E., Horvath J., Shiloh-Malawsky Y. et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis // Neurology. 2011. Vol. 77. N. 6. P. 589–593. doi: 10.1212/WNL.0b013e318228c136.
  73. Dietl H.W., Pulst S.M., Engelhardt P. et al. Paraneoplastic brainstem encephalitis with acute dystonia and central hypoventilation // Journal of Neurology. 1982. Vol. 227. P. 229–238. doi: 10.1007/BF00313390.
  74. Lu T., Cai W., Qiu W. et al. Brainstem and vestibulocochlear nerve involvement in relapsing — remitting anti-NMDAR encephalitis // Neurological Sciences. 2016. Vol. 37. P. 149–151. doi: 10.1007/s10072-015-2385-9.
  75. Schäbitz W.R., Rogalewski A., Hagemeister C. et al. VZV brainstem encephalitis triggers NMDA receptor immunoreaction // Neurology. 2014. Vol. 83. N. 24. P. 2309–2311. doi: 10.1212/WNL.0000000000001072.
  76. Wang H.Y., Li T., Li X.L. et al. Anti-N-methyl-D-aspartate receptor encephalitis mimics neuroleptic malignant syndrome: Case report and literature review // Neuropsychiatric Disease and Treatmen. 2019. Vol. 2019. P. 773–778. doi: 10.2147/NDVol.S195706.
  77. Young D. The NMDA receptor antibody paradox: A possible approach to developing immunotherapies targeting the NMDA receptor // Frontiers in Neurology. 2020. Vol. 11. P. 635. doi: 10.3389/fneur.2020.00635.
  78. Бачерников Н.Е., Петленко В.П., Щербина Е.А. Философские вопросы психиатрии. Киев: Здоровья; 1985. 192 с.
  79. Нуллер Ю.Л., Михаленко И.Н. Аффективные психозы. Ленинград: Медицина; 1988. 264 с.
  80. Смирнов В.К. Психогигиена и психическое здоровье. В сб.: Психическое здоровье и пограничные состояния. Сб. науч. тр. / Под общ. ред. В.К. Смирнова. Горький: ГМИ; 1983. с. 38–58.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».