Application of silk proteins spidroin, fibroin, and sericin-based cream for reparative skin regeneration in vivo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Impaired reparative regeneration leads to insufficient extracellular matrix formation and the development of chronic wounds, necessitating a personalized therapeutic approach. In modern regenerative medicine, biopolymers such as silk proteins serve as the basis for wound dressings and drug delivery systems due to their unique properties. The biocompatibility, modulation of intracellular signaling pathways, and antibacterial activity of spidroin (spider silk protein), fibroin, and sericin (silkworm silk proteins) suggest their potential for wound healing applications.

AIM: To evaluate the effects of a spidroin, fibroin, and sericin-based cream on skin regeneration in rats.

METHODS: The study included 30 male rats, in which full-thickness excisional skin defects (20 mm in diameter) were created on the back. The animals were divided into three groups: the experimental group, which received daily applications of the test cream, and two control groups—one treated with 5% dexpanthenol and the other left to undergo natural wound healing. Planimetric and histomorphometric analyses, along with clinical blood tests, were performed to assess reparative regeneration and systemic reactive changes.

RESULTS: The application of the test cream significantly accelerated wound healing, with complete skin restoration in the experimental group by day 14 compared to the untreated control group. Analysis of inflammatory activity showed moderate granulocytosis and signs of acute posthemorrhagic anemia without pronounced inflammatory alterations in blood parameters. Additionally, immune cell infiltration was lower in the experimental group than in the controls.

CONCLUSION: The combination of spider silk proteins (spidroin) and silkworm silk proteins (fibroin and sericin) enhances cell migration, proliferation, and differentiation, promotes extracellular matrix formation, and exerts anti-inflammatory effects without immunogenic properties. These findings support the potential clinical use of this silk protein-based formulation as a therapeutic agent for treating wounds with pathological regeneration.

About the authors

Irina Sorochanu

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: opeairina@gmail.com
ORCID iD: 0000-0002-6909-8937
SPIN-code: 4072-3845
Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Kristina S. Blitzine

North-Western State Medical University named after I.I. Mechnikov

Email: kristina.blitsyn@gmail.com
ORCID iD: 0000-0002-2347-0123
SPIN-code: 8210-8836
Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Dauddin I. Daudi

Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics; Silkins LLC

Email: d.daudi@patentcore.ru
ORCID iD: 0000-0003-2413-3695
SPIN-code: 2765-0230
Russian Federation, Saint Petersburg; Moscow

Nikita I. Zhemkov

North-Western State Medical University named after I.I. Mechnikov

Email: zhemkovni@gmail.com
ORCID iD: 0009-0003-2423-6544
SPIN-code: 3779-4360
Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Alina A. Pechenina

North-Western State Medical University named after I.I. Mechnikov

Email: alina.kyzminap@gmail.com
ORCID iD: 0009-0003-7964-1256
SPIN-code: 8920-9532
Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Maria A. Dmitrieva

Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics; Silkins LLC

Email: m_dmitrieva@scamt-itmo.ru
ORCID iD: 0009-0006-1596-3899
Russian Federation, Saint Petersburg; Moscow

Nikita A. Grin

Silkins LLC; Stavropol State Medical University

Email: nikita.grin.2014@mail.ru
ORCID iD: 0009-0000-4145-7160
SPIN-code: 5964-9291
Russian Federation, Moscow; Stavropol

Tatevik T. Asatryan

North-Western State Medical University named after I.I. Mechnikov

Email: Tatevik.asatryan@szgmu.ru
ORCID iD: 0000-0002-9146-3080
SPIN-code: 5587-1360

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Vladislav V. Tatarkin

North-Western State Medical University named after I.I. Mechnikov

Email: vladislav.tatarkin@szgmu.ru
ORCID iD: 0000-0002-9599-3935
SPIN-code: 5008-4677

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Evgeniy M. Trunin

North-Western State Medical University named after I.I. Mechnikov

Email: evgeniy.trunin@szgmu.ru
ORCID iD: 0000-0002-2452-0321
SPIN-code: 5903-0288

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 41 Kirochnaja st, 191015, Saint Petersburg

Roman V. Deev

Petrovsky National Research Centre Of Surgery

Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN-code: 2957-1687

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Moscow

References

  1. Sen CK. Human Wound and Its Burden: Updated 2022 Compendium of Estimates. Advances in Wound Care. 2023;12(12):657–670. doi: 10.1089/wound.2023.0150
  2. Tolstykh PI, Tamrazova OB, Pavlenko VV, et al. Long-term non-healing wounds and ulcers (pathogenesis, clinical picture, treatment). Moscow: Deepak, 2009. (In Russ.) EDN: QLUIIV
  3. Obolenskiy VN. Modern treatment of the chronic wounds. Medical council. 2016;10:148–154. EDN: XUYAIT doi: 10.21518/2079-701X-2016-10-148-154
  4. Gain J, Gerasimenko M, Shakhrai S, et al. Innovative principles of complex treatment of chronic wounds. Innovative Technologies in Medicine. 2017;4:223–242. EDN: ZWJFZD
  5. Shi C, Wang C, Liu H, et al. Selection of Appropriate Wound Dressing for Various Wounds. Frontiers in Bioengineering and Biotechnology. 2020;8:182. doi: 10.3389/fbioe.2020.00182
  6. Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, et al. Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev. 2020;153:28–53. doi: 10.1016/j.addr.2019.09.003
  7. Mazurek Ł, Szudzik M, Rybka M, et al. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules. 2022;12:1852. doi: 10.3390/biom12121852
  8. Liu Y, Huang W, Meng M, et al. Progress in the application of spider silk protein in medicine. J Biomater Appl. 2021;36(5):859–871. doi: 10.1177/08853282211003850
  9. Shitole M, Dugam S, Tade R, et al. Pharmaceutical applications of silk sericin. Ann Pharm Fr. 2020;78(6):469–486. doi: 10.1016/j.pharma.2020.06.005
  10. Patent RUS № 2825392/ 26.08.2024. Byul. № 24. Daudi DI, Grin NA, Pechyonykin EV, et al. Method for preparing a regenerative solution containing spider silk proteins spidroin, fibroin, sericin. Available from: https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/825/392/%D0%98%D0%97-02825392-00001/document.pdf (In Russ.) EDN: PAGTMU
  11. Cifuentes A, Gómez-Gil V, Ortega MA, et al. Chitosan hydrogels functionalized with either unfractionated heparin or bemiparin improve diabetic wound healing. Biomedicine & Pharmacotherapy. 2020;129:110498. doi: 10.1016/j.biopha.2020.110498
  12. Park SA, Teixeira LBC, Raghunathan VK, et al. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair Regen. 2014;22:368–380. doi: 10.1111/wrr.12172
  13. Römer L, Scheibel T. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion. 2008;2(4):154–161. doi: 10.4161/pri.2.4.7490
  14. Humenik M, Scheibel T, Smith A. Spider silk: understanding the structure-function relationship of a natural fiber. Prog Mol Biol Transl Sci. 2011;103:131–185. doi: 10.1016/B978-0-12-415906-8.00007-8
  15. Schäfer-Nolte F, Hennecke K, Reimers K, et al. Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg. 2014;259(4):781–792. doi: 10.1097/SLA.0b013e3182917677
  16. Guo C, Zhang J, Jordan JS, et al. Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship. Biomacromolecules. 2018;19(3):906–917. doi: 10.1021/acs.biomac.7b01687
  17. Jao D, Mou X, Hu X. Tissue Regeneration: A Silk Road. J Funct Biomater. 2016;7(3):22. doi: 10.3390/jfb7030022
  18. Aramwit P, Kanokpanont S, Nakpheng T, et al. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production. Int J Mol Sci. 2010;11:2200–2211. doi: 10.3390/ijms11052200
  19. Liebsch C, Bucan V, Menger B, et al. Preliminary investigations of spider silk in wounds in vivo — Implications for an innovative wound dressing. Burns. 2018;44(7):1829–1838. doi: 10.1016/j.burns.2018.03.016
  20. Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, et al. Fibroin and Sericin from Bombyx mori Silk Stimulate Cell Migration through Upregulation and Phosphorylation of c-Jun. PLOS ONE. 2012;7(7):e42271. doi: 10.1371/journal.pone.0042271
  21. Park YR, Tipu S, Park HJ, et al. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomaterialia. 2018;67:183–195. doi: 10.1016/j.actbio.2017.12.006
  22. Chun HJ, Park K, Kim CH, et al. Silk Fibroin in Wound Healing Process. Advances in Experimental Medicine and Biology. 2018;1077:115–126. doi: 10.1007/978-981-13-0947-2_7
  23. Aykac A, Karanlık B, Sehirli AO. Protective effect of silk fibroin in burn injury in rat model. Gene. 2017;30(641):287–291. doi: 10.1016/j.gene.2017.10.036
  24. Aramwit P, Towiwat P, Srichana T. Anti-inflammatory potential of silk sericin. Nat Prod Commun. 2013;8(4):501–504. doi: 10.1177/1934578X1300800424
  25. Wright S, Goodacre SL. Evidence for antimicrobial activity associated with common house spider silk. BMC Res Notes. 2012;5:326. doi: 10.1186/1756-0500-5-326
  26. Abd El-Aziz FEZA, Hetta HF, Abdelhamid BN, Abd Ellah NH. Antibacterial and wound-healing potential of PLGA/spidroin nanoparticles: a study on earthworms as a human skin model. Nanomedicine (Lond). 2022;17(6):353–365. doi: 10.2217/nnm-2021-0325
  27. Rajendran R, Balakumar C, Sivakumar R, et al. Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J Text Inst. 2012;103:458–462. doi: 10.1080/00405000.2011.586151
  28. Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM. Silkworm Sericin: Properties and Biomedical Applications. Biomed Res Int. 2016;2016:8175701. doi: 10.1155/2016/8175701

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Wound closure assessment: the black dashed line represents the initial wound area (at day 0, S0), and the red dashed line indicates the wound area at the control time point (Sx). Wound closure was calculated as the ratio of the closed wound area to its initial area, expressed as a percentage.

Download (166KB)
3. Fig. 2. Planimetric wound analysis: а, wound healing and epithelialization changes under the influence of the test cream, dexpanthenol, and natural healing (control) at different time points; b, wound closure changes (the graph presents median values, with a statistically significant difference between the experimental and control groups observed on day 7, p = 0.010).

Download (423KB)
4. Fig. 3. Histological examination of regenerating tissue in rats from different groups: а, histotopograms of the damaged areas and surrounding healthy tissues, stained with hematoxylin and eosin, ×40 (#, granulation tissue; |, boundary between the wound defect and the keratinocyte proliferation zone with epithelial layer growth; ↑, restoration of skin appendages; *, complete wound closure); b, changes of linear defect size, determined as the distance between the boundaries of epithelial growth zones (data presented as Me [Q1; Q3], where Me is the median, Q1 is the first quartile, and Q3 is the third quartile); с, inflammatory response intensity assessment using a semi-quantitative 4-point scale (0 points, no inflammation; 1–4 points, wound infiltration by inflammatory cells covering <25%, 25–50%, 50–75%, and >75% of the area, respectively).

Download (641KB)
5. Appendix 1. Changes of laboratory parameters in clinical blood tests of rats in different groups
Download (22KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».