АСИМПТОТИЧЕСКОЕ ИССЛЕДОВАНИЕ ИЗГИБА ПЛАСТИНЫ ДЛЯ СИЛЬНО ОРТОТРОПНОГО МАТЕРИАЛА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методика асимптотического осреднения была развита для трехмерных уравнений в частных производных с быстро осциллирующими коэффициентами. Например, для уравнений теории упругости. Затем была модифицирована и применялась к тонким телам в виде пластин (однородных или неоднородных, с ровными лицевыми поверхностями или нет), описываемых трехмерной теорией упругости. В этих случаях асимптотические решения строились относительно одного малого параметра, обычно являющегося отношением толщины пластины к характерному размеру в плане. Методика осреднения в таком случае также понижает размерности задачи, т.е. сводит трехмерную краевую задачу к некоторой двумерной.

В данной работе приводится обоснование применения метода к задаче с двумя малыми параметрами в случае однородной тонкой сильно ортотропной пластины, изгибаемой поверхностной нагрузкой без учета массовых сил. Вторым малым параметром является отношение поперечных модулей упругости к модулям в плане пластины. Показано, что сильная ортотропия эквивалентна увеличению толщины эквивалентной пластины.

Описана процедура получения распределения напряжений по толщине пластины для трех приближений. Первое приближение дает классическую теорию Кирхгофа, называемую также теорией Кирхгофа–Лява, а третье приближение совпадает с теорией Амбарцумяна и позволяет находить поперечные сдвиговые и нормальное напряжения. Рассмотрение цилиндрического изгиба дает возможность найти решения в рамках классических теорий пластин в виде формул, так же как и три приближения асимптотической теории, что упрощает сравнение. Рассмотрены примеры, когда осредненные ортотропные модули взяты для однослойного волокнистого композита.

Об авторах

С. В. Шешенин

Московский государственный университет им. М.В. Ломоносова

Email: sergey.sheshenin@mail.ru
Россия, Москва

Р. Р. Мурадханов

Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: mrdhnv@yandex.ru
Россия, Москва

Список литературы

  1. Янковский А.П. Применения явного по времени метода центральных разностей для численного моделирования динамического поведения упругопластически деформируемых гибких армированных пластин // Вычислительная механика сплошных сред. 2016. Т. 9. № 3. С. 279–297. https://doi.org/10.7242/1999-6691/2016.9.3.24
  2. Sanchez-Palencia E. Non-homogeneous media and vibration theory. Berlin: Springer Berlin Heidelberg. 1980. 398 p. https://doi.org/10.1007/3-540-10000-8
  3. Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов. М.: Наука. 1984. 352 с.
  4. Победря Б.Е. Механика композиционных материалов. М.: Изд-во Моск. ун-та. 1984. 336 с.
  5. Аннин Б.Д., Каламкаров А.Л., Колпаков А.Г., Партон B.З. Расчет и проектирование композиционных материалов и элементов конструкций. Новосибирск: Наука: Сиб. издат. 1993. 256 с.
  6. Kohn R.V., Vogelius M. A new model of thin plates with rapidly varying thickness // Int. J. Solids Struct. 1984. V. 20. № 4. P. 333–350. https://doi.org/10.1016/0020-7683(84)90044-1
  7. Levinski T., Telega J.J. Plates, laminates and shells. New York: World Scientific. 2000. https://doi.org/10.1142/3539
  8. Панасенко Г.П., Резцов М.В. Осреднение трехмерной задачи теории упругости в неоднородной пластине // Докл. АН СССР. 1987. Т. 294. № 5. С. 1061–1065.
  9. Шешенин С.В. Асимптотический анализ периодических в плане пластин // Изв. РАН. МТТ. 2006. № 6. С. 71–79.
  10. Шешенин С.В. Применение метода осреднения к пластинам, периодическим в плане // Вестн. Моск. ун-та. Матем. Механ. 2006. С. 47–51.
  11. Шешенин С.В., Скопцов К.А. Теория пластин, основанная на методе асимптотических разложений. // Мат. модел. числ. мет. 2014. № 2. С. 49–61.
  12. Скопцов К.А., Шешенин С.В. Асимптотической анализ слоистых пластин и пологих оболочек // Изв. РАН. МТТ. 2011. № 1. С. 161–171.
  13. Димитриенко Ю.И., Яковлев Д.О. Сравнительный анализ решений асимтотической теории многослойных тонких пластин и трехмерной теории упругости // Инженерный журнал: наука и инноваций. 2013. Т. 7. № 19. С. 17. https://doi.org/10.18698/2308-6033-2013-7-899
  14. Шешенин С.В., Савенкова М.И. Осреднение нелинейных задач в механике композитов // Вестн. Моск. ун-та. Матем. Механ. 2012. № 5. С. 58–61.
  15. Гольденвейзер А.Л. Теория тонких упругих оболочек. М.: Наука. 1976. 512 с.
  16. Назаров А.А. Основы теории и методы расчета пологих оболочек. М.: Стройиздат. 1966. 304 с.
  17. Гольденвейзер А.Л. Построение приближенной теории изгиба пластины методом асимптотического интегрирования уравнений теории упругости // ПММ. 1962. Т. 26. № 4. С. 668–686.
  18. Гольденвейзер А.Л. О приближенных методах расчета тонких упругих оболочек и пластин // Изв. АН. МТТ. 1997. № 3. С. 134–149.
  19. Гольденвейзер А.Л. Замечания о статье В.В. Васильева “Об асимптотическом методе обоснования теории пластин” // Изв. АН. МТТ. 1997. № 4. С. 150–157.
  20. Васильев В.В. О теории тонких пластин // Изв. АН. МТТ. 1992. № 3. С. 26–47.
  21. Васильев В.В. К дискуссии по классической теории пластин // Изв. АН. МТТ. 1995. № 4. С. 140–149.
  22. Васильев В.В. Об асимптотическом методе обоснования теории пластин // Изв. АН. МТТ. 1997. № 3. С. 150–155.
  23. Васильев В.В. Классическая теория пластин – история и современный анализ // Изв. АН. МТТ. 1998. № 3. С. 46–58.
  24. Амбарцумян С.А. Общая теория анизотропных оболочек. М.: Наука. 1974. 448 p.
  25. Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука. 1966. 636 с.
  26. Reissner E. The effect of transverse shear deformation on the bending of elastic plates // J. Appl. Mech. 1945. V. 12. № 2. P. A69–A77. https://doi.org/10.1115/1.4009435
  27. Kaneko T. On Timoshenko’s correction for shear in vibrating beams // J. Phys. D: Appl. Phys. 1975. V. 8. № 16. P. 1927–1936. https://doi.org/10.1088/0022-3727/8/16/003
  28. Шешенин С.В. Модуль механики композитов для пакета FYDESIS // Чебышевский сборник. 2017. Т. 18. № 3. С. 506–523. https://doi.org/10.22405/2226-8383-2017-18-3-506-523
  29. Sheshenin S.V., Du Y. Homogenization of rubber-cord layers at moderately large deformations // Mech. Compos. Mater. 2021. V. 57. 3. P. 275–286. https://doi.org/10.1007/s11029-021-09953-2
  30. Vasiliev V.V., Morozov E.V. Mechanics and analysis of composite materials. Oxford: Elsevier Science Techn. 2001. 424 p.
  31. Кристенсен Р.М. Введение в механику композитов. М.: Мир. 1982. 336 с.

Дополнительные файлы


© С.В. Шешенин, Р.Р. Мурадханов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».