On accounting for surface effects in bending of ultrathin plates
- Authors: Ustinov K.B.1
-
Affiliations:
- A.Yu. Ishlinsky Institute for problem in Mechanics RAS
- Issue: No 2 (2025)
- Pages: 238-266
- Section: Articles
- URL: https://bakhtiniada.ru/1026-3519/article/view/295953
- DOI: https://doi.org/10.31857/S1026351925020141
- EDN: https://elibrary.ru/aoogin
- ID: 295953
Cite item
Abstract
The equations for axisymmetric bending of a circular plate of the Voepl-von Kármán type are given that account forsurface effects: the presence of a surface layer characterized by its elastic constants and initial stresses, as well as the presence of initial volumetric stresses. An asymptotic solution for large deflections of the problem of a circular uniformly loaded rigidly clamped plate is obtained under the assumption of constant tensile forces. An assessment was made of the plate parameters at which surface effects become significant.
About the authors
K. B. Ustinov
A.Yu. Ishlinsky Institute for problem in Mechanics RAS
Author for correspondence.
Email: ustinov@ipmnet.ru
Russian Federation, Moscow
References
- Israelishvil J.N. Intermolecular and Surface Forces, London : Academic Press, 1992. 450 p.
- Shuttleworth R. The surface tension of solids // Proc. Phys. Soc. 1950. V. A63. P. 444–457. https://doi.org/10.1088/0370-1298/63/5/302
- Gurtin, M.E. and Murdoch, A.I. A continuum theory of elastic material surfaces // Arch. Ration. Mech. Anal. 1975. V. 57. № 4. P. 291–323. 1975. V. 59. P. 389–390. https://doi.org/10.1007/BF00261375
- Cahn J.W., Larche F. Surface stress and the chemical equilibrium of small crystals. II. Solid particles embedded in a solid matrix // Acta Metallurgica. 1982. V. 30. No. 1. P. 51–56. https://doi.org/10.1016/0001-6160(82)90043-8
- Podstrigach Y.S., Povstenko Y.Z. Introduction to Mechanics of Surface Phenomena in Deformable Solids. Naukova Dumka, Kiev 1985. 200 с. (in Russ.).
- Hashin Z. Thermoelastic properties of fiber composites with imperfect interface // Mech. Mater. 1990. V. 8. P. 333–348. https://doi.org/10.1016/0167-6636(90)90051-G
- Cammarata R.C. Surface and interface stress effects in thin films // Progr. Surf. Sci. 1994. V. 46. № 1. P. 1–38. https://doi.org/10.1016/S0921-5093(97)00128-7
- Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures // Surf. Sci. Rep. 1997. V. 29. P. 195–263. https://doi.org/10.1016/S0167-5729(97)00010-1
- Miller R.E., Shenoy V.B. Size-dependent elastic properties of nanosized structural elements // Nanotechnology. 2000. V. 11. P. 139–147. https://doi.org/10.1088/0957-4484/11/3/301
- Müller P., Saul A. Elastic effects on surface physics // Surf. Sci. Rep. 2004. V. 54. – P. 157–258. https://doi.org/10.1016/j.surfrep.2004.05.00
- Jiang B., Weng G.J. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials // J. Mech. Phys. Solids. 2004. V. 52. P. 1125–1149. https://doi.org/10.1016/j.jmps.2003.09.002
- Murdoch, A.I. Some fundamental aspects of surface modeling // J. of Elasticity. 2005. V. 80. P. 33–52. https://doi.org/10.1007/s10659-005-9024-2
- Shenoy V.B. Atomic calculations of elastic properties of metallic fcc crystal surfaces // Phys. Rev. B. 2005. V. 71. № 9. P. 094104. https://doi.org/10.1103/PhysRevB.71.094104
- Tan H., Liu C., Huang Y., Geubelle P.H. The cohesive law for the particle/matrix interfaces in high explosives // J. Mech. Phys. Solids. 2005. V. 53. P. 1892–1917. https://doi.org/10.1016/j.jmps.2005.01.009
- Eremeyev V.A., Altenbach H., Morozov, N.F. The influence of surface tension on the effective stiffness of nanosize plates // Dokl. Phys. 2009. V. 54. P. 98–100. https://doi.org/10.1134/S102833580902013X
- Altenbach H., Eremeev V.A., Morozov N.F. On equations of the linear theory of shells with surface stresses taken into account // Mechanics of Solids. 2010. V. 45. № 3. P. 331–342. https://doi.org/10.3103/S0025654410030040
- Goldstein R.V., Gorodtsov V.A., Ustinov K.V. Effect of residual stress and surface elasticity on deformation of nanometer spherical inclusions in an elastic matrix. Phys. Mesomech. 2010. V. 13. P. 318–328. https://doi.org/10.1016/j.physme.2010.11.012
- Ustinov K.B., Goldstein R.V., Gorodtsov V.A. On the Modeling of Surface and Interface Elastic Effects in Case of Eigenstrains. Models, Simulations and Applications / In: Series: Advanced Structured Materials, H. Altenbach, N.F. Morozov, (Eds.) 2013. V. 30. 193 p. https://doi.org/10.1007/978-3-642-35783-1_13
- Goldstein, R.V., Gorodtsov, V.A., Ustinov, K.B. On surface elasticity theory for plane interfaces // Phys Mesomech. 2014. V. 17. P. 30–38. https://doi.org/10.1134/S1029959914010044
- Gorodtsov V.A., Lisovenko D.S., Ustinov K.B., Spherical Inclusion in an Elastic Matrix in the Presence of Eigenstrain, Taking Into Account the Influence of the Properties of the Interface, Considered as the Limit of a Layer of Finite Thickness // Mech. Solids. 2019. V. 54. № 4. P. 514–522. https://doi.org/10.3103/S0025654419040034
- Nanofabrication: Nanolithography techniques and their applications. Editor: De Teresa, Jose Maria. IOP Publishing Ltd. 2020. 450 p. https://doi.org/10.1088/978-0-7503-2608-7
- Salashchenko N.N., Chkhalo N.I., Dyuzhev N.A. Maskless X-Ray Lithography Based on Moems and Microfocus X-Ray Tubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2018, no. 10, pp. 10–20. https://doi.org/10.1134/S0207352818100165 [In Russian]
- Silverman J.P. Challenges and progress in X-ray lithography // Journal of Vacuum Science and Technology B. 1998. V. 16. P. 31–37. https://doi.org/10.1116/1.590452
- Vladimirsky Y., Bourdillon A., et al. Demagnication in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diraction // J. Phys. D: Appl. Phys. 1999. V. 32. P. 114–118. https://doi.org/10.1088/0022-3727/32/22/102
- Cheng Y.L., Li M.L., Lin J.H., Lai J.H, Ke C.T., and Huang Y.C. Development of dynamic mask photolithography system // Proceedings of the IEEE International Conference on Mechatronics (ICM’05). 2005. P. 467–471. https://doi.org/10.1109/ICMECH.2005.1529302
- Esmaeili A., Steinmann P., Javili A. Surface plasticity: theory and computation. Comput. Mech. 2018. V. 62. P. 617–634. https://doi.org/10.1007/s00466-017-1517-x
- Timoshenko S.P., Goodier J.N. Theory of Elasticity, third ed. McGraw-Hill, 1970.
- Zhou L.G., Huang H. Are surfaces elastically softer or stiffer? // Applied Physics Letters. 2004. V. 84. № 11. P. 1940–1942. https://doi.org/10.1063/1.1682698
- deWit R. Theory of disclinations: II. Continuous and discrete disclinations in anisotropic elasticity // Journal of Research of the National Bureau of Standards, Section A. 7. 1973. V. 7A. № 1. P. 49–100. https://doi.org/10.6028/jres.077A.003
- Kröner E. Continuum theory of defects // Physics of defects. V. 35. P. 217–315.
- Nicholson M.M. Surface tension in ionic crystals. Proc. Roy. Soc. A. 1955. V. 228. P. 490. https://doi.org/10.1098/rspa.1955.0064
- Leo P.H, Sekerka R.F. The effect of surface stress on crystal–melt and crystal–crystal equilibrium. Springer, Berlin. 1999. P. 176–195. https://doi.org/10.1007/978-3-642-59938-5_8
- Fischer F.D., Simha N.K., Svoboda J. Kinetics of diffusional phase transformation in multicomponent elasticplastic materials // ASME J Eng Mater Technol. 2003. V. 125. P. 266–276
- Yang F. Effect of interfacial stresses on the elastic behavior of nanocomposite materials // J Appl Phys. 2006. V. 99. P. 054306. https://doi.org/10.1063/1.2179140
- Griffith A.A. The phenomena of rupture and flow in solids // Philos. Trans. R. Soc. Lond. 1921. V. 221. № 582–593. P. 163–198. https://doi.org/10.1098/rsta.1921.0006
- Nejat Pishkenari H., Yousefi F.S., TaghiBakhshi A. Determination of surface properties and elastic constants of FCC metals: a comparison among different EAM potentials in thin film and bulk scale. Materials Research Express. 2018. https://doi.org/10.1088/2053-1591/aae49b
- Vo T., Reeder B., Damone A., Newell P. Effect of Domain Size, Boundary, and Loading Conditions on Mechanical Properties of Amorphous Silica: A Reactive Molecular Dynamics Study // Nanomaterials. 2020. V. 10. № 1. P. 54. https://doi.org/10.3390/nano10010054
- Tang Z, Chen Y, Ye W. Calculation of Surface Properties of Cubic and Hexagonal Crystals through Molecular Statics Simulations // Crystals. 2020. V. 10. № 4. P. 329. https://doi.org/10.3390/cryst10040329
- Landau L.D. Lifshitz E.M. Fluid Mechanics. Vol. 6 (2nd ed.). Butterworth-Heinemann. 1987. ISBN 978-0-08-033933-7. (т. VI)
- Lychev S.A. Incompatible deformations of flexible plates. // Scientific notes of Kazan University. Series physical and mathematical sciences. 2023, V. 165, book. 4. P. 361–388 (In Russian). https://doi.org/10.26907/2541-7746.2023.4.361-388
- Altenbach H., Altenbach J., Kissing W. Mechanics of Composite Structural Elements. 2004. https://doi.org/10.1007/978-3-662-08589-9
- Timoshenko S.P., Woinowsky-Krieger S. Theory of plates and shells. McGraw-Hill, 1959. 635 p.
- Lychev S.A., Digilov A.V., Pivovarov N.A. Bending of a circular disk: from cylinder to ultrathin membrane. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya / Vestnik of Samara University. Natural Science Series, 2023, vol. 29, №. 4, pp. 77–105. https://doi.org/10.18287/2541-7525-2023-29-4-77-105.
- Ustinov K.B., Gandilyan D.V. On the boundary conditions for a thin circular plate conjugate to a massive body // Vestnik of Samara University. Natural Science Series. 2024. V. 30. N 1. P. 50–63. https://doi.org/10.18287/2541-7525-2024-30-1-50-63
- Anuriev V.I. Handbook of mechanical engineering designer in 3 vols. V. 1. 8th edition, revised and enlarged. Zhestkova I.N. (Ed.). Moscow: Mashinostroenie, 2001, 34 p. Available at: https://www.servotechnica.spb.ru/library/BOOKS/Anurev?ysclid=lsmzst00yj406639767. (In Russ.) ISBN 5-217-02963-3
Supplementary files
