Elastic-plastic analysis of a circular pipe turned inside out

封面

如何引用文章

全文:

详细

The paper presents an analytical solution to the problem of a circular pipe turned inside out in a rigid gasket. Formulas were obtained for the magnitude of the radial stress, which is responsible for the adhesion between the pipe and the gasket. The solution is obtained for an arbitrary incompressible hyperelastic material with a hyperelastic potential that depends only on the first invariant of the left Cauchy – Green deformation tensor (various generalizations of the neo-Hookean solid) or on the second invariant of the logarithmic Hencky strain tensor (various generalizations of the incompressible Hencky material). The solution takes into account the occurrence of plastic flow in areas adjacent to the lateral surfaces of the pipe. Both ideally plastic and isotropically hardening materials of a general type are considered. For the latter, a solution scheme is given; in the particular case of a linearly hardening material, a closed-form solution is obtained. For the perfect plasticity model, a closed-form solution was obtained for the neo-Hookean solid, for an incompressible Hencky material, and for the Gent material.

全文:

1. Введение. Выворачивание наизнанку гиперупругой трубы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  одно из универсальных решений в нелинейной теории упругости [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ 3], то есть решение этой задачи может быть построено для произвольного упругого потенциала несжимаемой среды. Упомянем здесь также исследование [4], в котором рассмотрено выворачивание полой упругой сферы. Ряд исследований посвящен проблеме свободно вывернутой трубы, то есть когда боковые поверхности трубы свободны от напряжений [5, 6]. Эти исследования обусловлены использованием деформации такого типа в различных энергетических демпферах и абсорберах. В частности, в работе [7] проведен анализ упруго-пластического деформирования тонкостенных труб при их выворачивании наизнанку в рамках деформационной теории пластичности Генки, основное внимание уделено определению необходимого для выворачивания осевого усилия.

Выворачивание труб (преимущественно из полимерных материалов) может служить для создания многослойных конструкций, когда внутри жесткой внешней трубы с той или иной целью создается покрытие (рис. 1).

 

Рис. 1. Выворачивание трубы в жесткой обойме.

 

В этом случае ключевыми характеристиками реализующегося напряженного состояния будет натяг между слоями конструкции (величина радиального напряжения на контактной границе), а также величина тангенциального напряжения на внутренней (свободной) поверхности вывернутой трубы, поскольку считается, что создание значительных сжимающих тангенциальных напряжений положительно сказывается на эксплуатации труб под давлением [8].

Нетрудно понять, что максимальная величина тангенциального напряжения на свободной поверхности ограничена пределом текучести материала. То есть максимальный эффект от создания сжимающих тангенциальных напряжений достигается в случае пластического деформирования материала. Этой задаче и посвящено представленное исследование.

2. Модель материала. Мы рассматриваем два варианта задания упругих соотношений материала: один с использованием модели обобщенного неогуковского материала, когда упругий потенциал есть функция только первого инварианта левого тензора (упругой) деформации Коши MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ Грина Be == (Fe)(Fe)T, Fe есть упругая часть градиента деформации F; второй с использованием обобщений несжимаемого материала Генки, когда упругий потенциал есть функция только второго инварианта тензора (упругой) деформации Генки he = ln(Be)1/2. Здесь везде индекс “e” означает “упругую часть” соответствующего тензора (подробнее о разделении деформации на упругую и пластическую составляющие см. раздел 6; здесь укажем только, что упругая часть деформации должна совпадать с полной при отсутствии пластического течения). Для инвариантов тензоров подразумеваются определения I1(A) = tr A, 2I2(A) = tr2A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  tr A2.

Итак, упругий закон несжимаемого изотропного тела задан в виде:

s=pI+2 W B e B e =pI+2 w B B e , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqef4uz3r3BUbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwB Lnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaq pepec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea 0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaaciWaamaadaGabi aaeaqbayaaaOqaaGabaiaa=nhacaaMe8Uaeyypa0JaeyOeI0IaamiC aiaahMeacqGHRaWkcaaIYaWaaSaaaeaacqGHciITcaWGxbaabaGaey OaIyRaaCOqamaaCaaaleqabaGaamyzaaaaaaGccaWHcbWaaWbaaSqa beaacaWGLbaaaOGaeyypa0JaeyOeI0IaamiCaiaahMeacqGHRaWkca aIYaGaam4DamaaBaaaleaacaWGcbaabeaakiaahkeadaahaaWcbeqa aiaadwgaaaGccaGGSaaaaa@542A@                                                                             (2.1)

где W=W I 1 B e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEfacqGH9aqpcaWGxbWdam aabmaabaWdbiaadMeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaqa daqaa8qacaWHcbWdamaaCaaaleqabaWdbiaadwgaaaaak8aacaGLOa GaayzkaaaacaGLOaGaayzkaaaaaa@39E9@  есть упругий потенциал (удельная по массе свободная энергия Гельмгольца), w B = w B I 1 B e =dW/d I 1 B e >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca WGcbaapaqabaGcpeGaeyypa0Jaam4Da8aadaWgaaWcbaWdbiaadkea a8aabeaakmaabmaabaWdbiaadMeapaWaaSbaaSqaa8qacaaIXaaapa qabaGcdaqadaqaa8qacaWHcbWdamaaCaaaleqabaWdbiaadwgaaaaa k8aacaGLOaGaayzkaaaacaGLOaGaayzkaaWdbiabg2da9iaadsgaca WGxbGaai4laiaadsgacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqa aOWaaeWaaeaapeGaaCOqa8aadaahaaWcbeqaa8qacaWGLbaaaaGcpa GaayjkaiaawMcaa8qacqGH+aGpcaaIWaaaaa@4869@ ; или же в виде:

s=pI+ W h e =pI w h h e , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqef4uz3r3BUbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwB Lnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaq pepec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea 0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaaciWaamaadaGabi aaeaqbayaaaOqaaGabaiaa=nhacaaMe8Uaeyypa0JaeyOeI0IaamiC aiaahMeacqGHRaWkdaWcaaqaaiabgkGi2kaadEfaaeaacqGHciITca WHObWaaWbaaSqabeaacaWGLbaaaaaakiabg2da9iabgkHiTiaadcha caWHjbGaeyOeI0Iaam4DamaaBaaaleaacaWGObaabeaakiaahIgada ahaaWcbeqaaiaadwgaaaGccaGGSaaaaa@5143@                                                                                        (2.2)

где есть упругий потенциал, w h = w h I 2 h e =dW/d I 2 h e <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca WGObaapaqabaGcpeGaeyypa0Jaam4Da8aadaWgaaWcbaWdbiaadIga a8aabeaakmaabmaabaWdbiaadMeapaWaaSbaaSqaa8qacaaIYaaapa qabaGcdaqadaqaa8qacaWHObWdamaaCaaaleqabaWdbiaadwgaaaaa k8aacaGLOaGaayzkaaaacaGLOaGaayzkaaWdbiabg2da9iaadsgaca WGxbGaai4laiaadsgacaWGjbWdamaaBaaaleaapeGaaGOmaaWdaeqa aOWaaeWaaeaapeGaaCiAa8aadaahaaWcbeqaa8qacaWGLbaaaaGcpa GaayjkaiaawMcaa8qacqGH8aapcaaIWaaaaa@48FF@ . В формулах выше p есть скалярная функция добавочного гидростатического давления, обусловленная ограничением несжимаемости материала. При отсутствии деформации Be = I, he = 0 и функция свободной энергии должна удовлетворять равенствам W | B e =I =W( I 1 ( B e ) | B e =I )=W(3)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEfacaaMc8UaaiiFamaaBaaaleaacaWHcbWaaWbaaWqabeaa caWGLbaaaSGaeyypa0JaaCysaaqabaGccqGH9aqpcaWGxbGaaiikai aadMeadaWgaaWcbaGaaGymaaqabaGccaGGOaGaaCOqamaaCaaaleqa baGaamyzaaaakiaacMcacaGG8bWaaSbaaSqaaiaahkeadaahaaadbe qaaiaadwgaaaWccqGH9aqpcaWHjbaabeaakiaacMcacqGH9aqpcaWG xbGaaiikaiaaiodacaGGPaGaeyypa0JaaGimaaaa@5283@  или W | h e =0 =W I 2 h e | h e =0 =W 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEfapaGaaiiFamaaBaaale aapeGaaCiAaaWdaeqaaOWaaSbaaSqaa8qacaWGLbaapaqabaGcdaWg aaWcbaWdbiabg2da9iaaicdaa8aabeaak8qacqGH9aqpcaWGxbWdam aabmaabaWdbiaadMeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaqa daqaa8qacaWHObWdamaaCaaaleqabaWdbiaadwgaaaaak8aacaGLOa GaayzkaaGaaiiFamaaBaaaleaapeGaaCiAaaWdaeqaaOWaaSbaaSqa a8qacaWGLbaapaqabaGcdaWgaaWcbaWdbiabg2da9iaaicdaa8aabe aaaOGaayjkaiaawMcaa8qacqGH9aqpcaWGxbWdamaabmaabaWdbiaa icdaa8aacaGLOaGaayzkaaWdbiabg2da9iaaicdaaaa@4B96@ . Рассматриваются только упругие потенциалы, представляющие собой функции тензоров обратимых деформаций. Независимость свободной энергии от пластической деформации является распространенным допущением для изотропных пластически несжимаемых материалов [9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ 12].

Пластическое течение в материале связывается с выполнением условия Треска:

σ 1 σ 3 =2 τ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeo8aZnaa BaaaleaacaaIZaaabeaakiabg2da9iaaikdacqaHepaDdaWgaaWcba Gaam4Caaqabaaaaa@432F@

где σ1 и σ3 есть наибольшее и наименьшее главные напряжения, τs – предел текучести материала на сдвиг.

3. Кинематика выворачивания круговой трубы в условиях плоской деформации. С точностью до жестких вращений связь координат материальных точек в начальном состоянии R, θ, Z с координатами в актуальном (деформированном) состоянии r, φ, z есть [2, 3, 6, 7]:

R=R r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkfacqGH9aqpcaWGsbWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaa@3D61@ , θ=φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeI7aXjabg2da9iabeA8aQbaa@3CA6@ , Z=z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadQfacqGH9aqpcaWG6baaaa@3B11@ ,

т.е. подразумевается, что цилиндрическая труба вывернута так, что ее длина осталась неизменной за счет внешних ограничений; при свободном выворачивании происходит увеличение длины трубы вместе с утоньшением стенки и увеличением ее внутреннего диаметра [6]). Задачи о радиальной деформации цилиндрического или сферического слоя  одни из наиболее простых среди упруго-пластических задач и часто имеют замкнутое решение даже в нелинейной постановке [13 16].

Итак, указанная кинематика приводит к тому, что тензора деформации диагональные; ненулевые компоненты левого тензора Коши – Грина B = FFT есть

B rr = R 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkeadaWgaaWcbaGaamOCaiaadkhaaeqaaOGaeyypa0ZaaeWa aeaaceWGsbGbauaaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi aaikdaaaGccaGGSaaaaa@411A@   B φφ = R r 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkeadaWgaaWcbaGaeqOXdOMaeqOXdOgabeaakiabg2da9maa bmaabaWaaSaaaeaacaWGsbaabaGaamOCaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiabgkHiTiaaikdaaaGccaGGSaaaaa@43A1@   B zz =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkeadaWgaaWcbaGaamOEaiaadQhaaeqaaOGaaGPaVlabg2da 9iaaigdacaGGSaaaaa@3F24@                                                                                (3.1)

а логарифмического тензора Генки h = ln B1/2

h rr =ln R , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIgadaWgaaWcbaGaamOCaiaadkhaaeqaaOGaeyypa0JaeyOe I0IaciiBaiaac6gadaabdaqaaiqadkfagaqbaaGaay5bSlaawIa7ai aacYcaaaa@43CA@ h φφ =ln R r , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIgadaWgaaWcbaGaeqOXdOMaeqOXdOgabeaakiabg2da9iab gkHiTiGacYgacaGGUbWaaSaaaeaacaWGsbaabaGaamOCaaaacaGGSa aaaa@432F@ h zz =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIgadaWgaaWcbaGaamOEaiaadQhaaeqaaOGaeyypa0JaaGim aiaacYcaaaa@3DBE@                                                                                    (3.2)

здесь R' = dR/dr. Условие несжимаемости tr h = 0 или det B = 1 приводит к дифференциальному уравнению R (R/r )=1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiqadkfagaqbaiaacIcadaWcgaqaaiaadkfaaeaacaWGYbaaaiaa cMcacaaMe8Uaeyypa0JaaGjbVlabgkHiTiaaigdacaGGSaaaaa@42C5@ , откуда R = (k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  r 2)1/2, где константа k = a2 + b2 удовлетворяет кинематическим граничным условиям R(a) = b, R(b) = a (см. рис. 2).

 

Рис. 2. Расчетная область (вывернутая труба).

 

Введем замену переменных:

x= 2 r 2 a 2 + b 2 1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhacqGH9aqpdaWcaaqaaiaaikdacaWGYbWaaWbaaSqabeaa caaIYaaaaaGcbaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadkgadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGymaiaacYca aaa@43D3@   r= a 2 + b 2 2 1+x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkhacqGH9aqpdaGcaaqaamaalaaabaGaamyyamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaaake aacaaIYaaaamaabmaabaGaaGymaiabgUcaRiaadIhaaiaawIcacaGL PaaaaSqabaGccaGGSaaaaa@4483@   1< b 2 a 2 b 2 + a 2 x b 2 a 2 b 2 + a 2 <1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabgkHiTiaaigdacqGH8aapcqGHsisldaWcaaqaaiaadkgadaah aaWcbeqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYa aaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadgga daahaaWcbeqaaiaaikdaaaaaaOGaeyizImQaamiEaiabgsMiJoaala aabaGaamOyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaah aaWcbeqaaiaaikdaaaaakeaacaWGIbWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapcaaI XaGaaiOlaaaa@5528@                             (3.3)

Тогда

R= a 2 + b 2 2 1x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkfacqGH9aqpdaGcaaqaamaalaaabaGaamyyamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaaake aacaaIYaaaamaabmaabaGaaGymaiabgkHiTiaadIhaaiaawIcacaGL PaaaaSqabaGccaGGSaaaaa@446E@   R r = 1x 1+x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaalaaabaGaamOuaaqaaiaadkhaaaGaeyypa0ZaaOaaaeaadaWc aaqaaiaaigdacqGHsislcaWG4baabaGaaGymaiabgUcaRiaadIhaaa aaleqaaaaa@407B@  и R = r R = 1+x 1x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiqadkfagaqbaiabg2da9iabgkHiTmaalaaabaGaamOCaaqaaiaa dkfaaaGaeyypa0JaeyOeI0YaaOaaaeaadaWcaaqaaiaaigdacqGHRa WkcaWG4baabaGaaGymaiabgkHiTiaadIhaaaaaleqaaOGaaiOlaaaa @44FA@                                               (3.4)

Инварианты тензоров деформации в новых обозначениях:

I 1 B = R 2 + R r 2 +1= 1x 1+x + 1+x 1x +1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadMeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaahkeaaiaa wIcacaGLPaaacqGH9aqpdaqadaqaaiqadkfagaqbaaGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGOmaaaakiabgUcaRmaabmaabaWa aSaaaeaacaWGsbaabaGaamOCaaaaaiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaikdaaaGccaaMb8Uaey4kaSIaaGjbVlaaigdacqGH 9aqpdaWcaaqaaiaaigdacqGHsislcaWG4baabaGaaGymaiabgUcaRi aadIhaaaGaey4kaSYaaSaaaeaacaaIXaGaey4kaSIaamiEaaqaaiaa igdacqGHsislcaWG4baaaiabgUcaRiaaigdacaGGSaaaaa@5B42@                                                                     (3.5)

I 2 h = 1 2 ln 2 R + ln 2 R r = 1 4 ln 2 1x 1+x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadMeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaahIgaaiaa wIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaIYa aaamaabmaabaGaciiBaiaac6gadaahaaWcbeqaaiaaikdaaaGcdaab daqaaiqadkfagaqbaaGaay5bSlaawIa7aiabgUcaRiGacYgacaGGUb WaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaacaWGsbaabaGaamOCaaaa aiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaaca aI0aaaaiGacYgacaGGUbWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaa caaIXaGaeyOeI0IaamiEaaqaaiaaigdacqGHRaWkcaWG4baaaaaa@597F@ .

4. Интегрирование уравнений. 4.1. Упругое ядро. В области r r 1 ep , r 2 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaaeWaae aapeGaamOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqa baWdbiaadwgacaWGWbaaaOGaaiilaiaadkhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcdaahaaWcbeqaa8qacaWGLbGaamiCaaaaaOWdaiaa wIcacaGLPaaaaaa@3D3E@  (см. рис. 2) нет пластического течения, тензоры полных и упругих деформаций тождественны, he = h, Be = B. С учетом замены (3.3) правило дифференцирования сложных функций дает:

d dr = dx dr d dx =2 2 1+x a 2 + b 2 d dx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaalaaabaGaamizaaqaaiaadsgacaWGYbaaaiabg2da9maalaaa baGaamizaiaadIhaaeaacaWGKbGaamOCaaaadaWcaaqaaiaadsgaae aacaWGKbGaamiEaaaacqGH9aqpcaaIYaWaaOaaaeaadaWcaaqaaiaa ikdadaqadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGaayzkaaaaba GaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadkgadaahaaWc beqaaiaaikdaaaaaaaqabaGcdaWcaaqaaiaadsgaaeaacaWGKbGaam iEaaaaaaa@50F6@ .

Тогда уравнение равновесия r(dsrr /dr) + σrr MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  σ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@  = 0 принимает вид:

2 1+x d σ rr dx = σ rr σ φφ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaaikdadaqadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGaayzk aaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabe aaaOqaaiaadsgacaWG4baaaiabg2da9iabgkHiTmaabmaabaGaeq4W dm3aaSbaaSqaaiaadkhacaWGYbaabeaakiabgkHiTiabeo8aZnaaBa aaleaacqaHgpGAcqaHgpGAaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa @5247@                                                                                                    (4.1)

Разность координатных напряжений может быть выражена как

σ rr σ φφ =2 w B B rr e B φφ e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGHsislcqaH dpWCdaWgaaWcbaGaeqOXdOMaeqOXdOgabeaakiabg2da9iaaikdaca WG3bWaaSbaaSqaaiaadkeaaeqaaOGaeyyXIC9aaeWaaeaacaWGcbWa a0baaSqaaiaadkhacaWGYbaabaGaamyzaaaakiabgkHiTiaadkeada qhaaWcbaGaeqOXdOMaeqOXdOgabaGaamyzaaaaaOGaayjkaiaawMca aaaa@5427@

в случае использования упругого закона (2.1); или

σ rr σ φφ = w h ( h rr e h φφ e ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGHsislcqaH dpWCdaWgaaWcbaGaeqOXdOMaeqOXdOgabeaakiabg2da9iabgkHiTi aadEhadaWgaaWcbaGaamiAaaqabaGccqGHflY1caGGOaGaamiAamaa DaaaleaacaWGYbGaamOCaaqaaiaadwgaaaGccqGHsislcaWGObWaa0 baaSqaaiabeA8aQjabeA8aQbqaaiaadwgaaaGccaGGPaGaaiilaaaa @554A@

если используется упругий закон (2.2).

Или же с учетом равенств (3.1), (3.2), (3.4):

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  для упругого закона (2.1) σ rr σ φφ =2 w B 1x 1+x 1+x 1x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGHsislcqaH dpWCdaWgaaWcbaGaeqOXdOMaeqOXdOgabeaakiabg2da9iaaikdaca WG3bWaaSbaaSqaaiaadkeaaeqaaOGaeyyXIC9aamWaaeaadaWcaaqa aiaaigdacqGHsislcaWG4baabaGaaGymaiabgUcaRiaadIhaaaGaey OeI0YaaSaaaeaacaaIXaGaey4kaSIaamiEaaqaaiaaigdacqGHsisl caWG4baaaaGaay5waiaaw2faaaaa@55F6@ ,

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  для упругого закона (2.2) σ rr σ φφ = w h ln 1x 1+x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGHsislcqaH dpWCdaWgaaWcbaGaeqOXdOMaeqOXdOgabeaakiabg2da9iabgkHiTi aadEhadaWgaaWcbaGaamiAaaqabaGcciGGSbGaaiOBamaalaaabaGa aGymaiabgkHiTiaadIhaaeaacaaIXaGaey4kaSIaamiEaaaaaaa@4DB9@ .

Интегрируя уравнение равновесия в упругой области r r 1 ep , r 2 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadkhacqGHiiIZdaqadaqaaiaadkhadaqhaaWcbaGaaGymaaqa aiaadwgacaWGWbaaaOGaaiilaiaadkhadaqhaaWcbaGaaGOmaaqaai aadwgacaWGWbaaaaGccaGLOaGaayzkaaaaaa@4472@ :

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  для упругого закона (2.1)

σ rr = x 1 ep x w B ξ 1+ξ 1+ξ 1ξ 1ξ 1+ξ dξ +C, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGH9aqpdaWd XbqaamaalaaabaGaam4DamaaBaaaleaacaWGcbaabeaakmaabmaaba GaeqOVdGhacaGLOaGaayzkaaaabaGaaGymaiabgUcaRiabe67a4baa daqadaqaamaalaaabaGaaGymaiabgUcaRiabe67a4bqaaiaaigdacq GHsislcqaH+oaEaaGaeyOeI0YaaSaaaeaacaaIXaGaeyOeI0IaeqOV dGhabaGaaGymaiabgUcaRiabe67a4baaaiaawIcacaGLPaaacaWGKb GaeqOVdGhaleaacaWG4bWaa0baaWqaaiaaigdaaeaacaWGLbGaamiC aaaaaSqaaiaadIhaa0Gaey4kIipakiabgUcaRiaadoeacaGGSaaaaa@6241@                                                                                       (4.2)

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  для упругого закона (2.2)

σ rr = x 1 ep x w h ξ 2 1+ξ ln 1ξ 1+ξ dξ +C, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGH9aqpdaWd XbqaamaalaaabaGaam4DamaaBaaaleaacaWGObaabeaakmaabmaaba GaeqOVdGhacaGLOaGaayzkaaaabaGaaGOmamaabmaabaGaaGymaiab gUcaRiabe67a4bGaayjkaiaawMcaaaaaciGGSbGaaiOBamaalaaaba GaaGymaiabgkHiTiabe67a4bqaaiaaigdacqGHRaWkcqaH+oaEaaGa amizaiabe67a4bWcbaGaamiEamaaDaaameaacaaIXaaabaGaamyzai aadchaaaaaleaacaWG4baaniabgUIiYdGccqGHRaWkcaWGdbGaaiil aaaa@5D3F@                                                                                                  (4.3)

где x1ep = 2(r1ep)2/(a2 + b2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  1, константа интегрирования C определяется из условия непрерывности радиального напряжения на упруго-пластической границе r= r 1 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGH9aqpcaWGYbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaamyzaiaa dchaaaaaaa@3612@ ; wB(x) и wh(x), как указано ранее, есть функции инвариантов

I 1 B e = 1x 1+x + 1+x 1x +1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadMeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaahkeadaah aaWcbeqaaiaadwgaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdacqGHsislcaWG4baabaGaaGymaiabgUcaRiaadIhaaaGaey4k aSYaaSaaaeaacaaIXaGaey4kaSIaamiEaaqaaiaaigdacqGHsislca WG4baaaiabgUcaRiaaigdaaaa@4B84@  и I 2 h e = 1 4 ln 2 1x 1+x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadMeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaahIgadaah aaWcbeqaaiaadwgaaaaakiaawIcacaGLPaaacqGH9aqpcqGHsislda WcaaqaaiaaigdaaeaacaaI0aaaaiGacYgacaGGUbWaaWbaaSqabeaa caaIYaaaaOWaaSaaaeaacaaIXaGaeyOeI0IaamiEaaqaaiaaigdacq GHRaWkcaWG4baaaaaa@492A@  соответственно.

4.2. Внутренняя пластическая область r a, r 1 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaamWaae aapeGaamyyaiaacYcacaWGYbWdamaaBaaaleaapeGaaGymaaWdaeqa aOWaaWbaaSqabeaapeGaamyzaiaadchaaaaak8aacaGLBbGaayzxaa aaaa@3A50@ . Здесь условие пластичности Треска выполняется в виде σrr MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  σ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@  = 2τs, следовательно, радиальное напряжение в этой области, удовлетворяющее уравнению равновесия (4.1) с граничным условием

σ rr x= b 2 a 2 b 2 + a 2 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaaeiaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaaaOGa ayjcSdWaaSbaaSqaaiaadIhacqGH9aqpcqGHsisldaWcaaqaaiaadk gadaahaaadbeqaaiaaikdaaaWccqGHsislcaWGHbWaaWbaaWqabeaa caaIYaaaaaWcbaGaamOyamaaCaaameqabaGaaGOmaaaaliabgUcaRi aadggadaahaaadbeqaaiaaikdaaaaaaaWcbeaakiabg2da9iaaicda caGGSaaaaa@4C8D@

имеет выражение

σ rr = τ s ln (1+x)( a 2 + b 2 ) 2 a 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGH9aqpcqGH sislcqaHepaDdaWgaaWcbaGaam4CaaqabaGcciGGSbGaaiOBamaala aabaGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykaiaacIcacaWGHbWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaG OmaaaakiaacMcaaeaacaaIYaGaamyyamaaCaaaleqabaGaaGOmaaaa aaGccaGGUaaaaa@5016@

Тогда константа интегрирования в формулах (4.2), (4.3) есть C= τ s ln 1+ x 1 ep a 2 + b 2 / 2 a 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadoeacqGH9aqpcqGHsislcqaHepaDdaWgaaWcbaGaam4Caaqa baGcciGGSbGaaiOBamaadmaabaWaaSGbaeaadaqadaqaaiaaigdacq GHRaWkcaWG4bWaa0baaSqaaiaaigdaaeaacaWGLbGaamiCaaaaaOGa ayjkaiaawMcaamaabmaabaGaamyyamaaCaaaleqabaGaaGOmaaaaki abgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaa aeaadaqadaqaaiaaikdacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@52F7@ .

4.3. Внешняя пластическая область r r 1 ep ,b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaamWaae aapeGaamOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqa baWdbiaadwgacaWGWbaaaOGaaiilaiaadkgaa8aacaGLBbGaayzxaa aaaa@3A51@ . Здесь условие пластичности Треска выполняется в виде σrr MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  σ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@  = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ 2τs. Уравнение равновесия (4.1) интегрируется в виде:

σ rr = τ s ln 1+x +K. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGH9aqpcqaH epaDdaWgaaWcbaGaam4CaaqabaGcciGGSbGaaiOBamaabmaabaGaaG ymaiabgUcaRiaadIhaaiaawIcacaGLPaaacqGHRaWkcaWGlbGaaiOl aaaa@4878@                                                                                                         (4.4)

Константа интегрирования K обеспечивает непрерывность радиального напряжения на упруго-пластической границе r = r 2 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacaGGGcGaeyypa0Jaam OCa8aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaa dwgacaWGWbaaaaaa@3737@ :

K= x 1 ep x 2 ep w B ξ 1+ξ 1+ξ 1ξ 1ξ 1+ξ dξ τ s ln 1+ x 1 ep 1+ x 2 ep a 2 + b 2 2 a 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadUeacqGH9aqpdaWdXbqaamaalaaabaGaam4DamaaBaaaleaa caWGcbaabeaakmaabmaabaGaeqOVdGhacaGLOaGaayzkaaaabaGaaG ymaiabgUcaRiabe67a4baadaqadaqaamaalaaabaGaaGymaiabgUca Riabe67a4bqaaiaaigdacqGHsislcqaH+oaEaaGaeyOeI0YaaSaaae aacaaIXaGaeyOeI0IaeqOVdGhabaGaaGymaiabgUcaRiabe67a4baa aiaawIcacaGLPaaacaWGKbGaeqOVdGhaleaacaWG4bWaa0baaWqaai aaigdaaeaacaWGLbGaamiCaaaaaSqaaiaadIhadaqhaaadbaGaaGOm aaqaaiaadwgacaWGWbaaaaqdcqGHRiI8aOGaeyOeI0IaeqiXdq3aaS baaSqaaiaadohaaeqaaOGaciiBaiaac6gadaWcaaqaamaabmaabaGa aGymaiabgUcaRiaadIhadaqhaaWcbaGaaGymaaqaaiaadwgacaWGWb aaaaGccaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamiEamaa DaaaleaacaaIYaaabaGaamyzaiaadchaaaaakiaawIcacaGLPaaada qadaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGIbWa aWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaaGOmaiaadg gadaahaaWcbeqaaiaaikdaaaaaaaaa@7BFF@                                 (4.5)

для упругого закона (2.1) и

K= x 1 ep x 2 ep w h ξ 2 1+ξ ln 1ξ 1+ξ dξ τ s ln 1+ x 1 ep 1+ x 2 ep a 2 + b 2 2 a 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadUeacqGH9aqpdaWdXbqaamaalaaabaGaam4DamaaBaaaleaa caWGObaabeaakmaabmaabaGaeqOVdGhacaGLOaGaayzkaaaabaGaaG OmamaabmaabaGaaGymaiabgUcaRiabe67a4bGaayjkaiaawMcaaaaa ciGGSbGaaiOBamaalaaabaGaaGymaiabgkHiTiabe67a4bqaaiaaig dacqGHRaWkcqaH+oaEaaGaamizaiabe67a4bWcbaGaamiEamaaDaaa meaacaaIXaaabaGaamyzaiaadchaaaaaleaacaWG4bWaa0baaWqaai aaikdaaeaacaWGLbGaamiCaaaaa0Gaey4kIipakiabgkHiTiabes8a 0naaBaaaleaacaWGZbaabeaakiGacYgacaGGUbWaaSaaaeaadaqada qaaiaaigdacqGHRaWkcaWG4bWaa0baaSqaaiaaigdaaeaacaWGLbGa amiCaaaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiaadI hadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaaaaGccaGLOaGaayzk aaWaaeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam OyamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaikda caWGHbWaaWbaaSqabeaacaaIYaaaaaaaaaa@76FD@                                           (4.6)

для упругого закона (2.2).

4.4. Положение упруго-пластических границ. Из упругого анализа в области r r 1 ep , r 2 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaaeWaae aapeGaamOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqa baWdbiaadwgacaWGWbaaaOGaaiilaiaadkhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcdaahaaWcbeqaa8qacaWGLbGaamiCaaaaaOWdaiaa wIcacaGLPaaaaaa@3D3E@  имеем на упруго-пластических границах следующие равенства.

Для упругого закона (2.1):

σ rr σ φφ r= r 1 ep =2 τ s =2 w B x= x 1 ep 1 x 1 ep 1+ x 1 ep 1+ x 1 ep 1 x 1 ep , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaaeiaabaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaamOCaiaadkha aeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabeA8aQjabeA8aQbqaba aakiaawIcacaGLPaaaaiaawIa7amaaBaaaleaacaWGYbGaeyypa0Ja amOCamaaDaaameaacaaIXaaabaGaamyzaiaadchaaaaaleqaaOGaaG PaVlabg2da9iaaikdacqaHepaDdaWgaaWcbaGaam4CaaqabaGccqGH 9aqpcaaIYaWaaqGaaeaacaWG3bWaaSbaaSqaaiaadkeaaeqaaaGcca GLiWoadaWgaaWcbaGaamiEaiabg2da9iaadIhadaqhaaadbaGaaGym aaqaaiaadwgacaWGWbaaaaWcbeaakiabgwSixpaadmaabaWaaSaaae aacaaIXaGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaamyzaiaa dchaaaaakeaacaaIXaGaey4kaSIaamiEamaaDaaaleaacaaIXaaaba GaamyzaiaadchaaaaaaOGaeyOeI0YaaSaaaeaacaaIXaGaey4kaSIa amiEamaaDaaaleaacaaIXaaabaGaamyzaiaadchaaaaakeaacaaIXa GaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaamyzaiaadchaaaaa aaGccaGLBbGaayzxaaGaaGjbVlaacYcaaaa@7A72@

σ rr σ φφ r= r 2 ep =2 τ s =2 w B x= x 2 ep 1 x 2 ep 1+ x 2 ep 1+ x 2 ep 1 x 2 ep . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaaeiaabaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaamOCaiaadkha aeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabeA8aQjabeA8aQbqaba aakiaawIcacaGLPaaaaiaawIa7amaaBaaaleaacaWGYbGaeyypa0Ja amOCamaaDaaameaacaaIYaaabaGaamyzaiaadchaaaaaleqaaOGaey ypa0JaeyOeI0IaaGOmaiabes8a0naaBaaaleaacaWGZbaabeaakiab g2da9iaaikdadaabcaqaaiaadEhadaWgaaWcbaGaamOqaaqabaaaki aawIa7amaaBaaaleaacaWG4bGaeyypa0JaamiEamaaDaaameaacaaI YaaabaGaamyzaiaadchaaaaaleqaaOGaeyyXIC9aamWaaeaadaWcaa qaaiaaigdacqGHsislcaWG4bWaa0baaSqaaiaaikdaaeaacaWGLbGa amiCaaaaaOqaaiaaigdacqGHRaWkcaWG4bWaa0baaSqaaiaaikdaae aacaWGLbGaamiCaaaaaaGccqGHsisldaWcaaqaaiaaigdacqGHRaWk caWG4bWaa0baaSqaaiaaikdaaeaacaWGLbGaamiCaaaaaOqaaiaaig dacqGHsislcaWG4bWaa0baaSqaaiaaikdaaeaacaWGLbGaamiCaaaa aaaakiaawUfacaGLDbaacaaMe8UaaiOlaaaa@79DC@                                                (4.7)

Для упругого закона (2.2):

( σ rr σ φφ ) r= r 1 ep =2 τ s = w h x= x 1 ep ln 1 x 1 ep 1+ x 1 ep , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaaeiaabaGaaiikaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqa baGccaaMc8UaeyOeI0IaaGjbVlabeo8aZnaaBaaaleaacqaHgpGAcq aHgpGAaeqaaOGaaiykaaGaayjcSdWaaSbaaSqaaiaadkhacqGH9aqp caWGYbWaa0baaWqaaiaaigdaaeaacaWGLbGaamiCaaaaaSqabaGccq GH9aqpcaaIYaGaeqiXdq3aaSbaaSqaaiaadohaaeqaaOGaeyypa0Ja eyOeI0YaaqGaaeaacaWG3bWaaSbaaSqaaiaadIgaaeqaaaGccaGLiW oadaWgaaWcbaGaamiEaiabg2da9iaadIhadaqhaaadbaGaaGymaaqa aiaadwgacaWGWbaaaaWcbeaakiGacYgacaGGUbWaaSaaaeaacaaIXa GaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaamyzaiaadchaaaaa keaacaaIXaGaey4kaSIaamiEamaaDaaaleaacaaIXaaabaGaamyzai aadchaaaaaaOGaaiilaaaa@6C63@

( σ rr σ φφ ) r= r 2 ep =2 τ s = w h x= x 2 ep ln 1 x 2 ep 1+ x 2 ep . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaaeiaabaGaaiikaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqa baGccaaMc8UaeyOeI0IaaGjbVlabeo8aZnaaBaaaleaacqaHgpGAcq aHgpGAaeqaaOGaaiykaaGaayjcSdWaaSbaaSqaaiaadkhacqGH9aqp caWGYbWaa0baaWqaaiaaikdaaeaacaWGLbGaamiCaaaaaSqabaGcca aMc8Uaeyypa0JaeyOeI0IaaGOmaiabes8a0naaBaaaleaacaWGZbaa beaakiabg2da9iabgkHiTmaaeiaabaGaam4DamaaBaaaleaacaWGOb aabeaaaOGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqpcaWG4bWaa0ba aWqaaiaaikdaaeaacaWGLbGaamiCaaaaaSqabaGcciGGSbGaaiOBam aalaaabaGaaGymaiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaa dwgacaWGWbaaaaGcbaGaaGymaiabgUcaRiaadIhadaqhaaWcbaGaaG OmaaqaaiaadwgacaWGWbaaaaaakiaac6caaaa@6EE1@                                                                   (4.8)

Эти уравнения определяют значения x1ep и x2ep  как функции от механических параметров материала. Из (4.7), (4.8) следует, что x1ep = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ x2ep < 0.

Если по (4.7), (4.8) оказывается, что

x 2 ep b 2 a 2 b 2 + a 2 = 1 δ 2 1+ δ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaaaOGaeyyz Im7aaSaaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaam yyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkgadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiabg2 da9maalaaabaGaaGymaiabgkHiTiabes7aKnaaCaaaleqabaGaaGOm aaaaaOqaaiaaigdacqGHRaWkcqaH0oazdaahaaWcbeqaaiaaikdaaa aaaOGaaiilaaaa@5142@                                                                                                              (4.9)

то упругое ядро занимает всю толщину трубы, которая после выворачивания деформирована чисто упруго. Безразмерная ширина упругой области определяется как

r 2 ep r 1 ep a 2 + b 2 = 1+ x 2 ep 2 1+ x 1 ep 2 = 1+ x 2 ep 2 1 x 2 ep 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaalaaabaGaamOCamaaDaaaleaacaaIYaaabaGaamyzaiaadcha aaGccqGHsislcaWGYbWaa0baaSqaaiaaigdaaeaacaWGLbGaamiCaa aaaOqaamaakaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUca RiaadkgadaahaaWcbeqaaiaaikdaaaaabeaaaaGccqGH9aqpdaGcaa qaamaalaaabaGaaGymaiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqa aiaadwgacaWGWbaaaaGcbaGaaGOmaaaaaSqabaGccqGHsisldaGcaa qaamaalaaabaGaaGymaiabgUcaRiaadIhadaqhaaWcbaGaaGymaaqa aiaadwgacaWGWbaaaaGcbaGaaGOmaaaaaSqabaGccqGH9aqpdaGcaa qaamaalaaabaGaaGymaiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqa aiaadwgacaWGWbaaaaGcbaGaaGOmaaaaaSqabaGccqGHsisldaGcaa qaamaalaaabaGaaGymaiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqa aiaadwgacaWGWbaaaaGcbaGaaGOmaaaaaSqabaGccaGGUaaaaa@6376@

Из (4.7), (4.8) следует, что ширина упругой зоны ненулевая, то есть упругое ядро всегда присутствует в вывернутой трубе. Это отличает представленную постановку задачи от исследования [7], которое подразумевает, что труба целиком находится в пластическом состоянии.

Таким образом, по (4.4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ (4.6) натяг MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ σrr(b)/τs можно представить в виде суммы двух функций, одна из которых Sg зависит только от геометрической характеристики вывернутой трубы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  соотношения ее диаметров δ = a/b < 1, вторая, Sm MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  только от механических характеристик материала:

σ rr b / τ s = S g + S m , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabgkHiTmaalyaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaa beaakmaabmaabaGaamOyaaGaayjkaiaawMcaaaqaaiabes8a0naaBa aaleaacaWGZbaabeaaaaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadEga aeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGTbaabeaakiaacYcaaa a@490C@

где S g δ =2ln δ+ δ 1 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadofadaWgaaWcbaGaam4zaaqabaGcdaqadaqaaiabes7aKbGa ayjkaiaawMcaaiabg2da9iaaikdaciGGSbGaaiOBamaalaaabaGaeq iTdqMaey4kaSIaeqiTdq2aaWbaaSqabeaacqGHsislcaaIXaaaaaGc baGaaGOmaaaacqGH+aGpcaaIWaaaaa@4994@  и

S m =ln 1+ x 1 ep 1+ x 2 ep + x 1 ep x 2 ep w B ξ τ s 1ξ 1+ξ 1+ξ 1ξ dξ 1+ξ = =ln 1 x 2 ep 2 + 0 x 2 ep w B ξ 1ξ w B ξ 1+ξ 1+ξ 1ξ 1ξ 1+ξ dξ τ s = =ln 1 x 2 ep 2 +8 0 x 2 ep w B ξ τ s ξ 1 ξ 2 2 dξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO abaiqabaGaam4uamaaBaaaleaacaWGTbaabeaakiabg2da9iGacYga caGGUbWaamWaaeaadaqadaqaaiaaigdacqGHRaWkcaWG4bWaa0baaS qaaiaaigdaaeaacaWGLbGaamiCaaaaaOGaayjkaiaawMcaamaabmaa baGaaGymaiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgaca WGWbaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSYaa8qC aeaadaWcaaqaaiaadEhadaWgaaWcbaGaamOqaaqabaGcdaqadaqaai abe67a4bGaayjkaiaawMcaaaqaaiabes8a0naaBaaaleaacaWGZbaa beaaaaGcdaqadaqaamaalaaabaGaaGymaiabgkHiTiabe67a4bqaai aaigdacqGHRaWkcqaH+oaEaaGaeyOeI0YaaSaaaeaacaaIXaGaey4k aSIaeqOVdGhabaGaaGymaiabgkHiTiabe67a4baaaiaawIcacaGLPa aadaWcaaqaaiaadsgacqaH+oaEaeaacaaIXaGaey4kaSIaeqOVdGha aaWcbaGaamiEamaaDaaameaacaaIXaaabaGaamyzaiaadchaaaaale aacaWG4bWaa0baaWqaaiaaikdaaeaacaWGLbGaamiCaaaaa0Gaey4k Iipakiabg2da9aqaaiabg2da9iGacYgacaGGUbWaamWaaeaacaaIXa GaeyOeI0YaaeWaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaWGLbGa amiCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay 5waiaaw2faaiabgUcaRmaapehabaWaamWaaeaadaWcaaqaaiaadEha daWgaaWcbaGaamOqaaqabaGcdaqadaqaaiabgkHiTiabe67a4bGaay jkaiaawMcaaaqaaiaaigdacqGHsislcqaH+oaEaaGaeyOeI0YaaSaa aeaacaWG3bWaaSbaaSqaaiaadkeaaeqaaOWaaeWaaeaacqaH+oaEai aawIcacaGLPaaaaeaacaaIXaGaey4kaSIaeqOVdGhaaaGaay5waiaa w2faamaabmaabaWaaSaaaeaacaaIXaGaey4kaSIaeqOVdGhabaGaaG ymaiabgkHiTiabe67a4baacqGHsisldaWcaaqaaiaaigdacqGHsisl cqaH+oaEaeaacaaIXaGaey4kaSIaeqOVdGhaaaGaayjkaiaawMcaam aalaaabaGaamizaiabe67a4bqaaiabes8a0naaBaaaleaacaWGZbaa beaaaaaabaGaaGimaaqaaiaadIhadaqhaaadbaGaaGOmaaqaaiaadw gacaWGWbaaaaqdcqGHRiI8aOGaeyypa0dabaGaeyypa0JaciiBaiaa c6gadaWadaqaaiaaigdacqGHsisldaqadaqaaiaadIhadaqhaaWcba GaaGOmaaqaaiaadwgacaWGWbaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaGccaGLBbGaayzxaaGaey4kaSIaaGioamaapehaba WaaSaaaeaacaWG3bWaaSbaaSqaaiaadkeaaeqaaOWaaeWaaeaacqaH +oaEaiaawIcacaGLPaaaaeaacqaHepaDdaWgaaWcbaGaam4Caaqaba aaaOWaaeWaaeaadaWcaaqaaiabe67a4bqaaiaaigdacqGHsislcqaH +oaEdaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaamizaiabe67a4bWcbaGaaGimaaqaaiaadIha daqhaaadbaGaaGOmaaqaaiaadwgacaWGWbaaaaqdcqGHRiI8aaaaaa@E12A@                                          (4.10)

для упругого закона (2.1),

Sm=ln1+x1ep1+x2ep+x1epx2epwhξ2τsln1ξ1+ξdξ1+ξ==ln1x2ep2+0x2epwhξ1ξwhξ1+ξln1+ξ1ξdξ2τs==ln1x2ep2+0x2epwhξτsξ1ξ2ln1+ξ1ξdξ                                                 (4.11)

для упругого закона (2.2). Здесь, как уже упоминалось, wB(x) и wh(x) есть функции инвариантов

I 1 B e = 1x 1+x + 1+x 1x +1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadMeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaahkeadaah aaWcbeqaaiaadwgaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdacqGHsislcaWG4baabaGaaGymaiabgUcaRiaadIhaaaGaey4k aSYaaSaaaeaacaaIXaGaey4kaSIaamiEaaqaaiaaigdacqGHsislca WG4baaaiabgUcaRiaaigdaaaa@4B84@  и I 2 h e = 1 4 ln 2 1x 1+x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadMeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaahIgadaah aaWcbeqaaiaadwgaaaaakiaawIcacaGLPaaacqGH9aqpcqGHsislda WcaaqaaiaaigdaaeaacaaI0aaaaiGacYgacaGGUbWaaWbaaSqabeaa caaIYaaaaOWaaSaaaeaacaaIXaGaeyOeI0IaamiEaaqaaiaaigdacq GHRaWkcaWG4baaaaaa@492A@

соответственно. В выражениях выше учтено, что x 1 ep = x 2 ep 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcdaahaaWcbeqaa8qacaWGLbGaamiCaaaakiabg2da 9iaacobicaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaS qabeaapeGaamyzaiaadchaaaGcpaGaeyizImQaaGimaaaa@3CA3@  и указанные инварианты есть четные функции x.

5. Частные случаи. Введем механический параметр ε= t s /μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabew7aLjabg2da9iaadshapa WaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaai4laiabeY7aTbaa@375E@ , где μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  нелинейный аналог модуля сдвига.

5.1. Несжимаемый материал Генки. Модель Генки задается упругим потенциалом:

W=2μ I 2 ( h e ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEfacqGH9aqpcqGHsislcaaIYaGaeqiVd0MaamysamaaBaaa leaacaaIYaaabeaakiaacIcacaWHObWaaWbaaSqabeaacaWGLbaaaO GaaiykaiaacYcaaaa@4349@   w h = dW d I 2 ( h e ) =2μ=const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEhadaWgaaWcbaGaamiAaaqabaGccqGH9aqpdaWcaaqaaiaa dsgacaWGxbaabaGaamizaiaadMeadaWgaaWcbaGaaGOmaaqabaGcca GGOaGaaCiAamaaCaaaleqabaGaamyzaaaakiaacMcaaaGaeyypa0Ja eyOeI0IaaGOmaiabeY7aTjabg2da9iGacogacaGGVbGaaiOBaiaaco hacaGG0bGaaiOlaaaa@4E15@

Уравнения (4.8) приводят к следующим выражениям: x 2 ep =  1  e ε / 1 + e ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcdaahaaWcbeqaa8qacaWGLbGaamiCaaaakiabg2da 9iaabccapaWaaeWaaeaapeGaaGymaiaabccacaGGtaIaamyza8aada ahaaWcbeqaa8qacaGGtaIaeqyTdugaaaGcpaGaayjkaiaawMcaa8qa caGGVaWdamaabmaabaWdbiaaigdacaqGGaGaey4kaSIaamyza8aada ahaaWcbeqaa8qacaGGtaIaeqyTdugaaaGcpaGaayjkaiaawMcaaaaa @4591@ , x 1 ep = x 2 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcdaahaaWcbeqaa8qacaWGLbGaamiCaaaakiabg2da 9iaacobicaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaS qabeaapeGaamyzaiaadchaaaaaaa@3A1B@ . Ограничение (4.9) приводит к неравенству δ< δ * = e ε/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabes7aKjabgYda8iabes7aK9 aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0Jaamyza8aadaahaaWc beqaa8qacaGGtaIaeqyTduMaai4laiaaikdaaaaaaa@3B3E@ δ < δ* = e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa83eGaaa@3764@ ε/2, при выполнении которого труба деформирована упругопластически. Безразмерная ширина упругой зоны:

r 2 ep r 1 ep a 2 + b 2 = 1 e ε/2 1+ e ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaalaaabaGaamOCamaaDaaaleaacaaIYaaabaGaamyzaiaadcha aaGccqGHsislcaWGYbWaa0baaSqaaiaaigdaaeaacaWGLbGaamiCaa aaaOqaamaakaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUca RiaadkgadaahaaWcbeqaaiaaikdaaaaabeaaaaGccqGH9aqpdaWcaa qaaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsisldaWcgaqa aiabew7aLbqaaiaaikdaaaaaaaGcbaWaaOaaaeaacaaIXaGaey4kaS IaamyzamaaCaaaleqabaGaeyOeI0IaeqyTdugaaaqabaaaaaaa@51FD@ .

По (4.11):

S m =ε2ln 1+ e ε 2 + 2 ε 0 (1 e ε )/ (1+ e ε ) ξ 1 ξ 2 ln 1+ξ 1ξ dξ = =ln4 ε 2 2 ε π 2 12 + Li 2 ( e ε ) <0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO abaiqabaGaam4uamaaBaaaleaacaWGTbaabeaakiabg2da9iabgkHi Tiabew7aLjabgkHiTiaaikdaciGGSbGaaiOBamaalaaabaGaaGymai abgUcaRiaadwgadaahaaWcbeqaaiabgkHiTiabew7aLbaaaOqaaiaa ikdaaaGaey4kaSYaaSaaaeaacaaIYaaabaGaeqyTdugaamaapehaba WaaSaaaeaacqaH+oaEaeaacaaIXaGaeyOeI0IaeqOVdG3aaWbaaSqa beaacaaIYaaaaaaakiGacYgacaGGUbWaaSaaaeaacaaIXaGaey4kaS IaeqOVdGhabaGaaGymaiabgkHiTiabe67a4baacaWGKbGaeqOVdGha leaacaaIWaaabaWaaSGbaeaacaGGOaGaaGymaiabgkHiTiaadwgada ahaaadbeqaaiabgkHiTiabew7aLbaaliaacMcaaeaacaGGOaGaaGym aiabgUcaRiaadwgadaahaaadbeqaaiabgkHiTiabew7aLbaaliaacM caaaaaniabgUIiYdGccqGH9aqpaeaacqGH9aqpciGGSbGaaiOBaiaa isdacqGHsisldaWcaaqaaiabew7aLbqaaiaaikdaaaGaeyOeI0YaaS aaaeaacaaIYaaabaGaeqyTdugaamaadmaabaWaaSaaaeaacqaHapaC daahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaaGOmaaaacqGHRaWkci GGmbGaaiyAamaaBaaaleaacaGGYaaabeaakiaacIcacqGHsislcaWG LbWaaWbaaSqabeaacqGHsislcqaH1oqzaaGccaGGPaaacaGLBbGaay zxaaGaeyipaWJaaGimaiaacYcaaaaa@8AA0@

где Li 2 ζ = 0 ζ ln 1t t dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiGacYeacaGGPbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacqaH 2oGEaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWdXbqaamaalaaaba GaciiBaiaac6gadaqadaqaaiaaigdacqGHsislcaWG0baacaGLOaGa ayzkaaaabaGaamiDaaaacaWGKbGaamiDaaWcbaGaaGimaaqaaiabeA 7a6bqdcqGHRiI8aaaa@4DF0@ .

5.2. Неогуковский материал. Модель неогуковского тела задается упругим потенциалом:

W= μ 2 I 1 ( B e )3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEfacqGH9aqpdaWcaaqaaiabeY7aTbqaaiaaikdaaaWaamWa aeaacaWGjbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaahkeadaahaa WcbeqaaiaadwgaaaGccaGGPaGaeyOeI0IaaG4maaGaay5waiaaw2fa aiaacYcaaaa@45E1@   w B = dW d I 1 ( B e ) = μ 2 =const. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEhadaWgaaWcbaGaamOqaaqabaGccqGH9aqpdaWcaaqaaiaa dsgacaWGxbaabaGaamizaiaadMeadaWgaaWcbaGaaGymaaqabaGcca GGOaGaaCOqamaaCaaaleqabaGaamyzaaaakiaacMcaaaGaeyypa0Za aSaaaeaacqaH8oqBaeaacaaIYaaaaiabg2da9iGacogacaGGVbGaai OBaiaacohacaGG0bGaaiOlaaaa@4CEB@

Уравнения (4.7) приводят к следующим выражениям: x 2 ep = 1+ ε 2 ε 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaaaOGaaGPa Vlabg2da9maakaaabaGaaGymaiabgUcaRiabew7aLnaaCaaaleqaba GaeyOeI0IaaGOmaaaaaeqaaOGaeyOeI0IaeqyTdu2aaWbaaSqabeaa cqGHsislcaaIXaaaaOGaaGzaVlaacYcaaaa@4A6E@   x 1 ep = x 2 ep . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhadaqhaaWcbaGaaGymaaqaaiaadwgacaWGWbaaaOGaaGPa Vlabg2da9iabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgaca WGWbaaaOGaaGzaVlaac6caaaa@4584@  Ограничение (4.9) приводит к неравенству δ< δ * = ε 2 +1 ε , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabes7aKjabgYda8iabes7aKnaaCaaaleqabaGaaiOkaaaakiab g2da9maakaaabaWaaOaaaeaacqaH1oqzdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIXaaaleqaaOGaeyOeI0IaeqyTdugaleqaaOGaaiil aaaa@462B@  при выполнении которого труба деформирована упругопластически. Безразмерная ширина упругой зоны:

r 2 ep r 1 ep a 2 + b 2 = ε1+ 1+ ε 2 2ε ε 1+ ε 2 +1 2ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaalaaabaGaamOCamaaDaaaleaacaaIYaaabaGaamyzaiaadcha aaGccqGHsislcaWGYbWaa0baaSqaaiaaigdaaeaacaWGLbGaamiCaa aaaOqaamaakaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgUca RiaadkgadaahaaWcbeqaaiaaikdaaaaabeaaaaGccqGH9aqpdaGcaa qaamaalaaabaGaeqyTduMaeyOeI0IaaGymaiabgUcaRmaakaaabaGa aGymaiabgUcaRiabew7aLnaaCaaaleqabaGaaGOmaaaaaeqaaaGcba GaaGOmaiabew7aLbaaaSqabaGccqGHsisldaGcaaqaamaalaaabaGa eqyTduMaeyOeI0YaaOaaaeaacaaIXaGaey4kaSIaeqyTdu2aaWbaaS qabeaacaaIYaaaaaqabaGccqGHRaWkcaaIXaaabaGaaGOmaiabew7a LbaaaSqabaGccaGGUaaaaa@5E25@

По (4.10):

S m =ln 1+ ε 2 +1 2 + 4 ε 0 1+ ε 2 ε 1 ξ 1 ξ 2 2 dξ =1ln 1+ ε 2 +1 2 ε 1 ln ε+ 1+ ε 2 <0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadofadaWgaaWcbaGaamyBaaqabaGccaaMc8Uaeyypa0JaeyOe I0IaciiBaiaac6gadaWcaaqaamaakaaabaGaaGymaiabgUcaRiabew 7aLnaaCaaaleqabaGaaGOmaaaaaeqaaOGaaGzaVlabgUcaRiaaigda aeaacaaIYaaaaiabgUcaRmaalaaabaGaaGinaaqaaiabew7aLbaada WdXbqaamaabmaabaWaaSaaaeaacqaH+oaEaeaacaaIXaGaeyOeI0Ia eqOVdG3aaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiaaygW7caWGKbGaeqOVdGhaleaacaaIWaaa baWaaOaaaeaacaaIXaGaey4kaSIaaGPaVlabew7aLnaaCaaameqaba GaeyOeI0IaaGOmaaaaaeqaaSGaeyOeI0IaeqyTdu2aaWbaaWqabeaa cqGHsislcaaIXaaaaaqdcqGHRiI8aOGaeyypa0JaaGymaiabgkHiTi GacYgacaGGUbWaaSaaaeaadaGcaaqaaiaaigdacqGHRaWkcqaH1oqz daahaaWcbeqaaiaaikdaaaaabeaakiaaygW7cqGHRaWkcaaIXaaaba GaaGOmaaaacqGHsislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigda aaGccaaMi8UaciiBaiaac6gadaqadaqaaiabew7aLjabgUcaRmaaka aabaGaaGymaiabgUcaRiabew7aLnaaCaaaleqabaGaaGOmaaaaaeqa aaGccaGLOaGaayzkaaGaeyipaWJaaGimaiaac6caaaa@85D8@

5.3. Упругий материал Гента. Модель Гента [17] с упругим потенциалом

W= μ 2 J m ln 1 I 1 ( B e )3 J m , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEfacqGH9aqpcaaMe8UaeyOeI0YaaSaaaeaacqaH8oqBaeaa caaIYaaaaiaadQeadaWgaaWcbaGaamyBaaqabaGcciGGSbGaaiOBam aabmqabaGaaGymaiabgkHiTmaalaaabaGaamysamaaBaaaleaacaaI XaaabeaakiaacIcacaWHcbWaaWbaaSqabeaacaWGLbaaaOGaaiykai abgkHiTiaaiodaaeaacaWGkbWaaSbaaSqaaiaad2gaaeqaaaaaaOGa ayjkaiaawMcaaiaacYcaaaa@4F7D@

где Jm = (I1(Be))max – 3 есть константа материала, (I1(Be))max есть предельное значение первого инварианта левого тензора Коши – Грина,

w B = dW d I 1 ( B e ) = μ 2 J m J m I 1 ( B e )3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEhadaWgaaWcbaGaamOqaaqabaGccqGH9aqpdaWcaaqaaiaa dsgacaWGxbaabaGaamizaiaadMeadaWgaaWcbaGaaGymaaqabaGcca GGOaGaaCOqamaaCaaaleqabaGaamyzaaaakiaacMcaaaGaeyypa0Za aSaaaeaacqaH8oqBaeaacaaIYaaaamaalaaabaGaamOsamaaBaaale aacaWGTbaabeaaaOqaaiaadQeadaWgaaWcbaGaamyBaaqabaGccqGH sisldaWadaqaaiaadMeadaWgaaWcbaGaaGymaaqabaGccaGGOaGaaC OqamaaCaaaleqabaGaamyzaaaakiaacMcacqGHsislcaaIZaaacaGL BbGaayzxaaaaaaaa@5401@

описывает полимерные материалы с ограниченной растяжимостью полимерных цепей.

Уравнения (4.7) с учетом (3.5) приводят к следующим выражениям:

x 2 ep = 1+ ε 2 1+4/ J m 1 ε 1+4/ J m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaaaOGaeyyp a0ZaaSaaaeaadaGcaaqaaiaaigdacqGHRaWkcqaH1oqzdaahaaWcbe qaaiaaikdaaaGcdaqadaqaaiaaigdacqGHRaWkdaWcgaqaaiaaisda aeaacaWGkbWaaSbaaSqaaiaad2gaaeqaaaaaaOGaayjkaiaawMcaaa WcbeaakiabgkHiTiaaigdaaeaacqaH1oqzdaqadaqaaiaaigdacqGH RaWkdaWcgaqaaiaaisdaaeaacaWGkbWaaSbaaSqaaiaad2gaaeqaaa aaaOGaayjkaiaawMcaaaaaaaa@509F@ , x 1 ep = x 2 ep . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhadaqhaaWcbaGaaGymaaqaaiaadwgacaWGWbaaaOGaaGPa Vlabg2da9iaaysW7cqGHsislcaaMc8UaamiEamaaDaaaleaacaaIYa aabaGaamyzaiaadchaaaGccaGGUaaaaa@4712@    (5.1)

Ограничение (4.9) приводит к неравенству

δ< δ * = 1+4/ J m ε+1 1+4/ J m ε 2 +1 1+4/ J m ε1+ 1+4/ J m ε 2 +1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabes7aKjabgYda8iabes7aKnaaCaaaleqabaGaaiOkaaaakiab g2da9maakaaabaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkdaWcga qaaiaaisdaaeaacaWGkbWaaSbaaSqaaiaad2gaaeqaaaaaaOGaayjk aiaawMcaaiabew7aLjabgUcaRiaaigdacqGHsisldaGcaaqaamaabm aabaGaaGymaiabgUcaRmaalyaabaGaaGinaaqaaiaadQeadaWgaaWc baGaamyBaaqabaaaaaGccaGLOaGaayzkaaGaeqyTdu2aaWbaaSqabe aacaaIYaaaaOGaey4kaSIaaGymaaWcbeaaaOqaamaabmaabaGaaGym aiabgUcaRmaalyaabaGaaGinaaqaaiaadQeadaWgaaWcbaGaamyBaa qabaaaaaGccaGLOaGaayzkaaGaeqyTduMaeyOeI0IaaGymaiabgUca RmaakaaabaWaaeWaaeaacaaIXaGaey4kaSYaaSGbaeaacaaI0aaaba GaamOsamaaBaaaleaacaWGTbaabeaaaaaakiaawIcacaGLPaaacqaH 1oqzdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaaleqaaaaaae qaaaaa@675A@ ,

при выполнении которого труба деформирована упругопластически. При j m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGQbWaaSbaaSqaaiaad2gaaeqaaOGaeyOKH4 QaeyOhIukaaa@3539@  это неравенство совпадает с неравенством, полученным для неогуковского материала δ< δ * = ε 2 +1 ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabes7aKjabgYda8iabes7aKnaaCaaaleqabaGaaiOkaaaakiaa ykW7cqGH9aqpdaGcaaqaamaakaaabaGaeqyTdu2aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGymaaWcbeaakiabgkHiTiabew7aLbWcbeaa kiaac6caaaa@47B8@

Формула (4.10) с учетом (3.5) дает:

S m =ln 1 x 2 ep 2 + 4 ε 0 x 2 ep ξ 2 1 ξ 2 dξ 1 1+4/ J m ξ 2 = =ln 1 x 2 ep 2 + J m ε arth x 2 ep 1+4/ J m 1+4/ J m + 1 2 ln 1 x 2 ep 1+ x 2 ep . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO abaiqabaGaam4uamaaBaaaleaacaWGTbaabeaakiabg2da9iGacYga caGGUbWaamWaaeaacaaIXaGaeyOeI0YaaeWaaeaacaWG4bWaa0baaS qaaiaaikdaaeaacaWGLbGaamiCaaaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaaaOGaay5waiaaw2faaiabgUcaRmaalaaabaGaaG inaaqaaiabew7aLbaadaWdXbqaamaalaaabaGaeqOVdG3aaWbaaSqa beaacaaIYaaaaaGcbaGaaGymaiabgkHiTiabe67a4naaCaaaleqaba GaaGOmaaaaaaGcdaWcaaqaaiaadsgacqaH+oaEaeaacaaIXaGaeyOe I0YaaeWaaeaacaaIXaGaey4kaSYaaSGbaeaacaaI0aaabaGaamOsam aaBaaaleaacaWGTbaabeaaaaaakiaawIcacaGLPaaacqaH+oaEdaah aaWcbeqaaiaaikdaaaaaaaqaaiaaicdaaeaacaWG4bWaa0baaWqaai aaikdaaeaacaWGLbGaamiCaaaaa0Gaey4kIipakiabg2da9aqaaiab g2da9iaaysW7caaMe8UaciiBaiaac6gadaWadaqaaiaaigdacqGHsi sldaqadaqaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaay zxaaGaey4kaSYaaSaaaeaacaWGkbWaaSbaaSqaaiaad2gaaeqaaaGc baGaeqyTdugaamaadmaabaWaaSaaaeaacaqGHbGaaeOCaiaabshaca qGObWaaeWaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaWGLbGaamiC aaaakmaakaaabaGaaGymaiabgUcaRmaalyaabaGaaGinaaqaaiaadQ eadaWgaaWcbaGaamyBaaqabaaaaaqabaaakiaawIcacaGLPaaaaeaa daGcaaqaaiaaigdacqGHRaWkdaWcgaqaaiaaisdaaeaacaWGkbWaaS baaSqaaiaad2gaaeqaaaaaaeqaaaaakiabgUcaRmaalaaabaGaaGym aaqaaiaaikdaaaGaciiBaiaac6gadaWcaaqaaiaaigdacqGHsislca WG4bWaa0baaSqaaiaaikdaaeaacaWGLbGaamiCaaaaaOqaaiaaigda cqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaWGLbGaamiCaaaaaa aakiaawUfacaGLDbaacaaMe8UaaiOlaaaaaa@A06B@

Здесь x 2 ep MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaaaaaa@3BF2@  определяется по формуле (5.1).

Рис. 3. Предельная величина геометрического параметра для упругих моделей Генки, неогуковского тела и Гента: если δ = a/b > δ*, то вывернутая труба деформирована упруго, если δ = a/b < δ*, то упруго-пластически.

 

На рис. 3 представлены графики δ*(e) для всех трех моделей. При δ δ* вывернутая труба деформирована чисто упруго, при δ < δ* – упругопластически.

Безразмерная ширина упругой области приведена на рис. 4 как функция от механического параметра ε = τ s /μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabew7aLjaabccacqGH9aqpcq aHepaDpaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaai4laiabeY7a Tbaa@38CD@ . Чем шире диапазон упругих деформаций материала (т.е. чем выше ε = τ s /μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabew7aLjaabccacqGH9aqpcq aHepaDpaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaai4laiabeY7a Tbaa@38CD@ , тем шире упругая область в вывернутой трубе и меньше натяг. Предельная величина натяга при ε 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabew7aLjaabccacqGHsgIRca aIWaaaaa@34D4@  (т.е. ε 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabew7aLjaabccacqGHsgIRca aIWaaaaa@34D4@  ) есть lim ε0 σ rr (b)/ τ s = S g , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabgkHiTmaaxababaGaciiBaiaacMgacaGGTbaaleaacqaH1oqz cqGHsgIRcaaIWaaabeaakmaalyaabaGaeq4Wdm3aaSbaaSqaaiaadk hacaWGYbaabeaakiaacIcacaWGIbGaaiykaaqaaiabes8a0naaBaaa leaacaWGZbaabeaaaaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadEgaae qaaOGaaiilaaaa@4D5B@  что совпадает с решением для жестко-пластического материала.

 

Рис. 4. Ширина упругой зоны.

 

Действительно, в вывернутой трубе из жестко-пластического материа ла в области r a, a 2 + b 2 /2 σ rr σ φφ = 2 τ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaamWaae aapeGaamyyaiaacYcapaWaaeWaaeaapeGaamyya8aadaahaaWcbeqa a8qacaaIYaaaaOGaey4kaSIaamOya8aadaahaaWcbeqaa8qacaaIYa aaaaGcpaGaayjkaiaawMcaa8qacaGGVaGaaGOmaaWdaiaawUfacaGL DbaapeGaeq4Wdm3damaaBaaaleaapeGaamOCaiaadkhaa8aabeaak8 qacaGGtaIaeq4Wdm3damaaBaaaleaapeGaeqOXdOMaeqOXdOgapaqa baGcpeGaeyypa0JaaeiiaiaaikdacqaHepaDpaWaaSbaaSqaa8qaca WGZbaapaqabaaaaa@4E36@ , а в области r a 2 + b 2 /2,b σ rr σ φφ = 2 τ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaamWaae aadaqadaqaa8qacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqGH RaWkcaWGIbWdamaaCaaaleqabaWdbiaaikdaaaaak8aacaGLOaGaay zkaaWdbiaac+cacaaIYaGaaiilaiaadkgaa8aacaGLBbGaayzxaaWd biabeo8aZ9aadaWgaaWcbaWdbiaadkhacaWGYbaapaqabaGcpeGaai 4eGiabeo8aZ9aadaWgaaWcbaWdbiabeA8aQjabeA8aQbWdaeqaaOWd biabg2da9iaabccacaaIYaGaeqiXdq3damaaBaaaleaapeGaam4Caa Wdaeqaaaaa@4E18@ ; интегрируя уравнение равновесия с учетом непрерывности σrr на границе между областями, имеем:

σ rr b =2 τ s ln 1 2 a b + b a =2 τ s ln δ+ δ 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGcdaqadaqaaiaa dkgaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaIYaGaeqiXdq3aaS baaSqaaiaadohaaeqaaOGaciiBaiaac6gadaWadaqaamaalaaabaGa aGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaadggaaeaacaWGIb aaaiabgUcaRmaalaaabaGaamOyaaqaaiaadggaaaaacaGLOaGaayzk aaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0IaaGOmaiabes8a0naaBa aaleaacaWGZbaabeaakiGacYgacaGGUbWaaSaaaeaacqaH0oazcqGH RaWkcqaH0oazdaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaaIYa aaaaaa@5E05@ .

Для материала Гента, чем выше ограничение растяжимости полимерных цепей (т.е., чем ниже параметр модели Jm), тем меньше упругая область в вывернутой трубе и тем выше натяг при одной и той же величине параметра ε = τs /μ.

 

Рис. 5. Величина натяга есть сумма “геометрического” и “механического” слагаемых - σrr(b)/τs = Sg + Sm; Sm = Sm), ε = τs /μ, Sg = Sg(δ), δ = a/b.

 

На рис. 5 представлены графики функций Sg = Sg(d) и Sm= Sm(ε), в сумме составляющих натяг между вывернутой трубой и обоймой.

6. Учет изотропного деформационного упрочнения материала в пластических областях. Зависимость предела текучести от накопленной пластической деформации может существенно сказываться на напряженном состоянии, особенно при больших деформациях. Корректный подход к учету эффекта упрочнения подразумевает введение в модель законов упрочнения вида τs = τs(q), основанных на параметре накопленной пластической деформации q, который определяется интегрированием дифференциального уравнения q ˙ = 2/3 tr ( D p ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiqadghagaGaaiabg2da9maakaaabaWaaeWaaeaadaWcgaqaaiaa ikdaaeaacaaIZaaaaaGaayjkaiaawMcaaiGacshacaGGYbGaaiikai aahseadaahaaWcbeqaaiaadchaaaGccaGGPaWaaWbaaSqabeaacaaI Yaaaaaqabaaaaa@4385@  по всему пути деформирования. Здесь точка над символом означает материальную производную по времени, Dp MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  тензор скорости пластической деформации.

В представленной задаче путь деформирования, приводящий к выворачиванию трубы, как и в соответствующей задаче нелинейной теории упругости, остается вне рассмотрения. Мы имеем дело только с начальным и конечным положением точек материала в пространстве. Для учета эффектов упрочнения в этом случае можно использовать вместо накопленной пластической деформации параметр интенсивности пластической деформации [7], который может быть введен, например, определением hint = ( h 1 p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaigdaaeaacaWGWbaaaa aa@328E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@   h 3 p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaiodaaeaacaWGWbaaaa aa@3290@  )/2, где h 1 p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaigdaaeaacaWGWbaaaa aa@328E@  и h 3 p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaiodaaeaacaWGWbaaaa aa@3290@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  наибольшее и наименьшее собственные значения логарифмического тензора пластической деформации hp.

Здесь требуется указать разделение деформаций на упругую и пластическую составляющие. Используя мультипликативное разложение градиента деформации F = FeF p и учитывая, что все тензорные величины в рассматриваемой задаче диагональные, можно записать:

B=F F T = F e F p F p T F e T = F e F e T F p F p T = B e B p , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaahkeacqGH9aqpcaWHgbGaaCOramaaCaaaleqabaGaamivaaaa kiabg2da9iaahAeadaahaaWcbeqaaiaadwgaaaGccaWHgbWaaWbaaS qabeaacaWGWbaaaOWaaeWaaeaacaWHgbWaaWbaaSqabeaacaWGWbaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaaca WHgbWaaWbaaSqabeaacaWGLbaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaWGubaaaOGaeyypa0JaaCOramaaCaaaleqabaGaamyzaaaakm aabmaabaGaaCOramaaCaaaleqabaGaamyzaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaamivaaaakiaahAeadaahaaWcbeqaaiaadchaaa GcdaqadaqaaiaahAeadaahaaWcbeqaaiaadchaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaadsfaaaGccaaMb8Uaeyypa0JaaCOqamaaCa aaleqabaGaamyzaaaakiaahkeadaahaaWcbeqaaiaadchaaaGccaGG Saaaaa@5FEB@

h=ln B 1/2 =ln B e 1/2 +ln B p 1/2 = h e + h p . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaahIgacqGH9aqpciGGSbGaaiOBaiaahkeadaahaaWcbeqaamaa lyaabaGaaGymaaqaaiaaikdaaaaaaOGaeyypa0JaciiBaiaac6gada qadaqaaiaahkeadaahaaWcbeqaaiaadwgaaaaakiaawIcacaGLPaaa daahaaWcbeqaamaalyaabaGaaGymaaqaaiaaikdaaaaaaOGaaGzaVl abgUcaRiaaysW7ciGGSbGaaiOBamaabmaabaGaaCOqamaaCaaaleqa baGaamiCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaaca aIXaaabaGaaGOmaaaaaaGccaaMi8Uaeyypa0JaaCiAamaaCaaaleqa baGaamyzaaaakiabgUcaRiaaysW7caWHObWaaWbaaSqabeaacaWGWb aaaOGaaiOlaaaa@5BC2@

Далее, поскольку мы используем пластический потенциал Треска, можно заключить, что осевая компонента скорости пластической деформации, соответствующая промежуточному главному напряжению, отсутствует, Dpzz = 0, следовательно, hpzz = 0 и hprr = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ hp φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ . Тогда hint = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@ hp φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ > 0 во внутренней пластической области r r 2 ep ,b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaamWaae aapeGaamOCamaaDaaaleaacaaIYaaabaGaamyzaiaadchaaaGccaGG SaGaamOyaaWdaiaawUfacaGLDbaaaaa@39DE@  и hint = hp φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaaju20aabaaa aaaaaapeGaa8NXdaaa@37FA@ > 0 во внешней пластической области r r 2 ep ,b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhacqGHiiIZpaWaamWaae aapeGaamOCamaaDaaaleaacaaIYaaabaGaamyzaiaadchaaaGccaGG SaGaamOyaaWdaiaawUfacaGLDbaaaaa@39DE@ . Приравнивая разницу главных напряжений, выраженную с использованием условия текучести и с использованием упругого закона (2.1), имеем:

σ rr σ φφ = +2 τ s h int , r a, r 1 ep 2 τ s h int , r r 2 ep ,b = = w h h rr e h φφ e =2 w h h φφ e =2 w h h φφ h φφ p = = +2 w h h int 1 2 ln 1x 1+x , r a, r 1 ep ; 2 w h h int + 1 2 ln 1x 1+x , r r 2 ep ,b . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO abaiqabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaakiabgkHi Tiabeo8aZnaaBaaaleaacqaHgpGAcqaHgpGAaeqaaOGaeyypa0Zaai qaaqaabeqaaiabgUcaRiaaikdacqaHepaDdaWgaaWcbaGaam4Caaqa baGcdaqadaqaaiaadIgadaWgaaWcbaGaciyAaiaac6gacaGG0baabe aaaOGaayjkaiaawMcaaiaacYcacaWLjaGaamOCaiabgIGiopaadmaa baGaamyyaiaacYcacaWGYbWaa0baaSqaaiaaigdaaeaacaWGLbGaam iCaaaaaOGaay5waiaaw2faaaqaaiabgkHiTiaaikdacqaHepaDdaWg aaWcbaGaam4CaaqabaGcdaqadaqaaiaadIgadaWgaaWcbaGaciyAai aac6gacaGG0baabeaaaOGaayjkaiaawMcaaiaacYcacaWLjaGaamOC aiabgIGiopaadmaabaGaamOCamaaDaaaleaacaaIYaaabaGaamyzai aadchaaaGccaGGSaGaamOyaaGaay5waiaaw2faaaaacaGL7baacaWL jaGaeyypa0dabaGaeyypa0JaeyOeI0Iaam4DamaaBaaaleaacaWGOb aabeaakiabgwSixpaabmaabaGaamiAamaaDaaaleaacaWGYbGaamOC aaqaaiaadwgaaaGccqGHsislcaWGObWaa0baaSqaaiabeA8aQjabeA 8aQbqaaiaadwgaaaaakiaawIcacaGLPaaacqGH9aqpcaaIYaGaam4D amaaBaaaleaacaWGObaabeaakiaadIgadaqhaaWcbaGaeqOXdOMaeq OXdOgabaGaamyzaaaakiabg2da9iaaikdacaWG3bWaaSbaaSqaaiaa dIgaaeqaaOGaeyyXIC9aaeWaaeaacaWGObWaaSbaaSqaaiabeA8aQj abeA8aQbqabaGccqGHsislcaWGObWaa0baaSqaaiabeA8aQjabeA8a QbqaaiaadchaaaaakiaawIcacaGLPaaacqGH9aqpaeaacqGH9aqpda GabaabaeqabaGaey4kaSIaaGOmaiaadEhadaWgaaWcbaGaamiAaaqa baGccqGHflY1daqadaqaaiaadIgadaWgaaWcbaGaciyAaiaac6gaca GG0baabeaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaciiB aiaac6gadaWcaaqaaiaaigdacqGHsislcaWG4baabaGaaGymaiabgU caRiaadIhaaaaacaGLOaGaayzkaaGaaiilaiaaxMaacaWGYbGaeyic I48aamWaaeaacaWGHbGaaiilaiaadkhadaqhaaWcbaGaaGymaaqaai aadwgacaWGWbaaaaGccaGLBbGaayzxaaGaai4oaaqaaiabgkHiTiaa ikdacaWG3bWaaSbaaSqaaiaadIgaaeqaaOGaeyyXIC9aaeWaaeaaca WGObWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkdaWc aaqaaiaaigdaaeaacaaIYaaaaiGacYgacaGGUbWaaSaaaeaacaaIXa GaeyOeI0IaamiEaaqaaiaaigdacqGHRaWkcaWG4baaaaGaayjkaiaa wMcaaiaacYcacaWLjaGaamOCaiabgIGiopaadmaabaGaamOCamaaDa aaleaacaaIYaaabaGaamyzaiaadchaaaGccaGGSaGaamOyaaGaay5w aiaaw2faaiaac6caaaGaay5Eaaaaaaa@E48F@                                                               (6.1)

Здесь

w h = w h ( I 2 ( h e )), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadEhadaWgaaWcbaGaamiAaaqabaGccqGH9aqpcaWG3bWaaSba aSqaaiaadIgaaeqaaOGaaiikaiaadMeadaWgaaWcbaGaaGOmaaqaba GccaGGOaGaaCiAamaaCaaaleqabaGaamyzaaaakiaacMcacaGGPaGa aiilaaaa@44A5@

I 2 h e = 1/2 tr h e 2 = h φφ e 2 = h φφ h φφ p 2 = = h int 1 2 ln 1x 1+x 2 , r a, r 1 ep ; h int + 1 2 ln 1x 1+x 2 , r r 2 ep ,b . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO abaiqabaGaamysamaaBaaaleaacaaIYaaabeaakmaabmaabaGaaCiA amaaCaaaleqabaGaamyzaaaaaOGaayjkaiaawMcaaiabg2da9iabgk HiTmaabmaabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGL PaaaciGG0bGaaiOCaiaahIgadaahaaWcbeqaaiaadwgaaaGcdaahaa WcbeqaaiaaikdaaaGccqGH9aqpcqGHsisldaqadaqaaiaadIgadaqh aaWcbaGaeqOXdOMaeqOXdOgabaGaamyzaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabg2da9iabgkHiTmaabmaabaGaamiA amaaBaaaleaacqaHgpGAcqaHgpGAaeqaaOGaeyOeI0IaamiAamaaDa aaleaacqaHgpGAcqaHgpGAaeaacaWGWbaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeyypa0dabaGaeyypa0Zaaiqaaqaabe qaaiabgkHiTmaabmaabaGaamiAamaaBaaaleaaciGGPbGaaiOBaiaa cshaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaciGGSb GaaiOBamaalaaabaGaaGymaiabgkHiTiaadIhaaeaacaaIXaGaey4k aSIaamiEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcca GGSaGaaCzcaiaadkhacqGHiiIZdaWadaqaaiaadggacaGGSaGaamOC amaaDaaaleaacaaIXaaabaGaamyzaiaadchaaaaakiaawUfacaGLDb aacaaMe8Uaai4oaaqaaiabgkHiTmaabmaabaGaamiAamaaBaaaleaa ciGGPbGaaiOBaiaacshaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaaciGGSbGaaiOBamaalaaabaGaaGymaiabgkHiTiaadIha aeaacaaIXaGaey4kaSIaamiEaaaaaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaGccaGGSaGaaCzcaiaadkhacqGHiiIZdaWadaqaaiaa dkhadaqhaaWcbaGaaGOmaaqaaiaadwgacaWGWbaaaOGaaiilaiaadk gaaiaawUfacaGLDbaacaaMe8UaaiOlaaaacaGL7baaaaaa@A112@

Из (6.1) с учетом последних равенств можно выразить интенсивность пластической деформации hint как функцию переменной x. И далее в обеих пластических областях можно проинтегрировать уравнения равновесия (4.1) и получить в конечном итоге искомый натяг. Интегрирование в упругой области, равно как и определение положения упруго-пластических границ, остаются такими же, как и в предыдущих разделах для идеально-пластического (неупрочняемого) материала.

В качестве примера рассмотрим несжимаемый материал, линейно-упрочняющийся в пластическом диапазоне с функцией упрочнения τs(hint) = τs0(1 + chint), τs0 и χ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqaajugqbabaaa aaaaaapeGaa83eGaaa@36D2@  материальные константы, и описывающийся законом Генки в упругом диапазоне. По (6.1) с wh = – 2μ имеем:

h int = ln 1x / 1+x τ s0 /μ 2+χ τ s0 /μ ,r a, r 1 ep , ln 1+x / 1x τ s0 /μ 2+χ τ s0 /μ ,r r 2 ep ,b . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIgadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakiabg2da 9maaceaaeaqabeaadaWcaaqaaiGacYgacaGGUbWaamWaaeaadaWcga qaamaabmaabaGaaGymaiabgkHiTiaadIhaaiaawIcacaGLPaaaaeaa daqadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGaayzkaaaaaaGaay 5waiaaw2faaiabgkHiTmaalyaabaGaeqiXdq3aaSbaaSqaaiaadoha caaIWaaabeaaaOqaaiabeY7aTbaaaeaacaaIYaGaey4kaSIaeq4Xdm 2aaSGbaeaacqaHepaDdaWgaaWcbaGaam4CaiaaicdaaeqaaaGcbaGa eqiVd0gaaaaacaGGSaGaaGjbVlaaysW7caWGYbGaeyicI48aamWaae aacaWGHbGaaiilaiaadkhadaqhaaWcbaGaaGymaaqaaiaadwgacaWG WbaaaaGccaGLBbGaayzxaaGaaGjbVlaacYcaaeaadaWcaaqaaiGacY gacaGGUbWaamWaaeaadaWcgaqaamaabmaabaGaaGymaiabgUcaRiaa dIhaaiaawIcacaGLPaaaaeaadaqadaqaaiaaigdacqGHsislcaWG4b aacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiabgkHiTmaalyaabaGa eqiXdq3aaSbaaSqaaiaadohacaaIWaaabeaaaOqaaiabeY7aTbaaae aacaaIYaGaey4kaSIaeq4Xdm2aaSGbaeaacqaHepaDdaWgaaWcbaGa am4CaiaaicdaaeqaaaGcbaGaeqiVd0gaaaaacaGGSaGaaGjbVlaays W7caWGYbGaeyicI48aamWaaeaacaWGYbWaa0baaSqaaiaaikdaaeaa caWGLbGaamiCaaaakiaacYcacaWGIbaacaGLBbGaayzxaaGaaGjbVl aac6caaaGaay5Eaaaaaa@94FA@

Отсюда следует, что интенсивность пластической деформации максимальна на боковых поверхностях трубы при

x=± 1 δ 2 1+ δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIhacqGH9aqpcqGHXcqSdaWcaaqaaiaaigdacqGHsislcqaH 0oazdaahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeqiTdq 2aaWbaaSqabeaacaaIYaaaaaaaaaa@4499@ , а именно h int max = 2μln δ 1 τ s0 2μ+χ τ s0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadIgadaqhaaWcbaGaciyAaiaac6gacaGG0baabaGaciyBaiaa cggacaGG4baaaOGaeyypa0ZaaSaaaeaacaaIYaGaeqiVd0MaciiBai aac6gacqaH0oazdaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHsisl cqaHepaDdaWgaaWcbaGaam4CaiaaicdaaeqaaaGcbaGaaGOmaiabeY 7aTjabgUcaRiabeE8aJjabes8a0naaBaaaleaacaWGZbGaaGimaaqa baaaaaaa@5536@ .

Уравнение равновесия в пластических областях:

2 1+x d σ rr dx = 2 τ s0 1+χ ln 1x / 1+x τ s0 /μ 2+χ τ s0 /μ ,r a, r 1 ep , +2 τ s0 1+χ ln 1+x / 1x τ s0 /μ 2+χ τ s0 /μ ,r r 2 ep ,b . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaaikdadaqadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGaayzk aaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabe aaaOqaaiaadsgacaWG4baaaiabg2da9maaceaaeaqabeaacqGHsisl caaIYaGaeqiXdq3aaSbaaSqaaiaadohacaaIWaaabeaakmaabmaaba GaaGymaiabgUcaRiabeE8aJnaalaaabaGaciiBaiaac6gadaWadaqa amaalyaabaWaaeWaaeaacaaIXaGaeyOeI0IaamiEaaGaayjkaiaawM caaaqaamaabmaabaGaaGymaiabgUcaRiaadIhaaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaGaeyOeI0YaaSGbaeaacqaHepaDdaWgaaWcba Gaam4CaiaaicdaaeqaaaGcbaGaeqiVd0gaaaqaaiaaikdacqGHRaWk cqaHhpWydaWcgaqaaiabes8a0naaBaaaleaacaWGZbGaaGimaaqaba aakeaacqaH8oqBaaaaaaGaayjkaiaawMcaaiaacYcacaaMe8UaaGjb VlaadkhacqGHiiIZdaWadaqaaiaadggacaGGSaGaamOCamaaDaaale aacaaIXaaabaGaamyzaiaadchaaaaakiaawUfacaGLDbaacaaMe8Ua aiilaaqaaiabgUcaRiaaikdacqaHepaDdaWgaaWcbaGaam4Caiaaic daaeqaaOWaaeWaaeaacaaIXaGaey4kaSIaeq4Xdm2aaSaaaeaaciGG SbGaaiOBamaadmaabaWaaSGbaeaadaqadaqaaiaaigdacqGHRaWkca WG4baacaGLOaGaayzkaaaabaWaaeWaaeaacaaIXaGaeyOeI0IaamiE aaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaacqGHsisldaWcgaqaai abes8a0naaBaaaleaacaWGZbGaaGimaaqabaaakeaacqaH8oqBaaaa baGaaGOmaiabgUcaRiabeE8aJnaalyaabaGaeqiXdq3aaSbaaSqaai aadohacaaIWaaabeaaaOqaaiabeY7aTbaaaaaacaGLOaGaayzkaaGa aiilaiaaysW7caaMe8UaamOCaiabgIGiopaadmaabaGaamOCamaaDa aaleaacaaIYaaabaGaamyzaiaadchaaaGccaGGSaGaamOyaaGaay5w aiaaw2faaiaaysW7caGGUaaaaiaawUhaaaaa@B0FE@

Интегрируя уравнение равновесия по всей расчетной области, можно получить величину натяга:

σ rr r=b τ s0 = S g + S m χΦ 1+ χε/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabgkHiTmaalaaabaWaaqGaaeaacqaHdpWCdaWgaaWcbaGaamOC aiaadkhaaeqaaaGccaGLiWoadaWgaaWcbaGaamOCaiabg2da9iaadk gaaeqaaaGcbaGaeqiXdq3aaSbaaSqaaiaadohacaaIWaaabeaaaaGc cqGH9aqpdaWcaaqaaiaadofadaWgaaWcbaGaam4zaaqabaGccqGHRa WkcaWGtbWaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iaeq4XdmMaeuOP dyeabaGaaGymaiabgUcaRmaalyaabaGaeq4XdmMaeqyTdugabaGaaG Omaaaaaaaaaa@554B@ ,

S g δ =2ln δ+ δ 1 2 >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadofadaWgaaWcbaGaam4zaaqabaGcdaqadaqaaiabes7aKbGa ayjkaiaawMcaaiabg2da9iaaikdaciGGSbGaaiOBamaalaaabaGaeq iTdqMaey4kaSIaeqiTdq2aaWbaaSqabeaacqGHsislcaaIXaaaaaGc baGaaGOmaaaacqGH+aGpcaaIWaGaaiilaaaa@4A44@ S m ε =ln4 ε 2 2 ε π 2 12 + Li 2 e ε <0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiaadofadaWgaaWcbaGaamyBaaqabaGcdaqadaqaaiabew7aLbGa ayjkaiaawMcaaiabg2da9iGacYgacaGGUbGaaGinaiabgkHiTmaala aabaGaeqyTdugabaGaaGOmaaaacqGHsisldaWcaaqaaiaaikdaaeaa cqaH1oqzaaWaamWaaeaadaWcaaqaaiabec8aWnaaCaaaleqabaGaaG OmaaaaaOqaaiaaigdacaaIYaaaaiabgUcaRiGacYeacaGGPbWaaSba aSqaaiaackdaaeqaaOWaaeWaaeaacqGHsislcaWGLbWaaWbaaSqabe aacqGHsislcqaH1oqzaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGH8aapcaaIWaGaaiilaaaa@5A14@

Φ δ = Li 2 1 1+ δ 2 π 2 12 ln 2 δ+ 1 2 ln 2 1+ δ 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabfA6agnaabmaabaGaeqiTdqgacaGLOaGaayzkaaGaeyypa0Ja ciitaiaacMgadaWgaaWcbaGaaiOmaaqabaGcdaWcaaqaaiaaigdaae aacaaIXaGaey4kaSIaeqiTdq2aaWbaaSqabeaacaaIYaaaaaaakiab gkHiTmaalaaabaGaeqiWda3aaWbaaSqabeaacaaIYaaaaaGcbaGaaG ymaiaaikdaaaGaeyOeI0IaciiBaiaac6gadaahaaWcbeqaaiaaikda aaGccqaH0oazcqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiGacY gacaGGUbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaaIXaGaey4k aSIaeqiTdq2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaey ipaWJaaGimaaaa@5CCF@ .

При χ = 0 это выражение совпадает с результатом предыдущего раздела для неупрочняющегося материала σ rr r=b / τ s0 = S g + S m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaamaalyaabaWaaqGaaeaacqGHsislcqaHdpWCdaWgaaWcbaGaamOC aiaadkhaaeqaaaGccaGLiWoadaWgaaWcbaGaamOCaiabg2da9iaadk gaaeqaaaGcbaGaeqiXdq3aaSbaaSqaaiaadohacaaIWaaabeaaaaGc cqGH9aqpcaWGtbWaaSbaaSqaaiaadEgaaeqaaOGaey4kaSIaam4uam aaBaaaleaacaWGTbaabeaaaaa@4B4C@ , а при ε0 μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipCI8FfYJH8Wr peeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbb a9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH1oqzcqGHsgIRcaaIWaWaaeWaaeaacqaH8o qBcqGHsgIRcqGHEisPaiaawIcacaGLPaaaaaa@3AAF@  можно получить с помощью правила Лопиталя выражение натяга lim ε0 σ rr r=b / τ s0 = S g χΦ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Wrpu0dbbf9q8qqaqpepec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaabauaaaO qaaiabgkHiTmaaxababaGaciiBaiaacMgacaGGTbaaleaacqaH1oqz cqGHsgIRcaaIWaaabeaakmaalyaabaWaaqGaaeaacqaHdpWCdaWgaa WcbaGaamOCaiaadkhaaeqaaaGccaGLiWoadaWgaaWcbaGaamOCaiab g2da9iaadkgaaeqaaaGcbaGaeqiXdq3aaSbaaSqaaiaadohacaaIWa aabeaaaaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadEgaaeqaaOGaaGPa VlabgkHiTiaaysW7cqaHhpWycqqHMoGrcaGGSaaaaa@57BB@  который соответствует жестко-пластическому материалу. Увеличение параметра упрочнения ведет к увеличению натяга.

 

Исследование выполнено в рамках государственного задания ИМиМ ДВО РАН.

×

作者简介

G Sevastyanov

Institute of Machinery and Metallurgy, KhFRC FEBRAS

编辑信件的主要联系方式.
Email: akela.86@mail.ru
俄罗斯联邦, Komsomolsk-on-Amur

参考

  1. Rivlin R.S. Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1949. Vol. 242. P. 173–195. https://doi.org/10.1098/rsta.1949.0009
  2. Gent A.N., Rivlin R.S. Experiments on the mechanics of rubber. I: Eversion of a tube // Proceedings of the Physical Society. Section B. 1952. Vol. 65 (2). P. 118–121. https://doi.org/10.1088/0370-1301/65/2/305
  3. Lurie A.I. Nonlinear theory of elasticity. ‎ North Holland, New York, 1990.
  4. Ericksen J.L. Inversion of a perfectly elastic spherical shell // ZAMM. 1955. V. 35 (9–10). P. 382–385. https://doi.org/10.1002/zamm.19550350909
  5. Orr A. The eversion and bifurcation of elastic cylinders. PhD Thesis. University of Glasgow, 1995.
  6. Baaser H., Nedjar B., Martin R.J., Neff P. Eversion of tubes: Comparison of material models. In: Constitutive Models for Rubber X. CRC Press, 2017. http://dx.doi.org/10.1201/9781315223278-20
  7. Gao X.-L., Atluri S.N. An exact finite deformation elasto-plastic solution for the outside-in free eversion problem of a tube of elastic linear-hardening material // IMA Journal of Applied Mathematics. 1997. Vol. 58. P. 259–275. https://doi.org/10.1093/imamat/58.3.259
  8. Shufen R., Dixit U.S. A review of theoretical and experimental research on various autof-rettage processes // Journal of Pressure Vessel Technology. 2018. V. 140. № 5. 050802. https://doi.org/10.1115/1.4039206
  9. Levitas V.I. Large deformation of materials with complex rheological properties at normal and high pressure. Nova Science Publishers, New York. 1996
  10. Burenin A.A., Kovtanyuk L.V. Large irreversible deformations and elastic aftereffects. Dal’nauka, Vladivostok, 2013 (in Russian)
  11. Burenin A.A., Kovtanyuk L.V., Panchenko G.L. Modeling of large elastoviscoplastic deformations with thermophysical effects taken into account // Mechanics of Solids. 2010. V. 45. P. 583–594. https://doi.org/10.3103/S0025654410040084
  12. Feng B., Levitas V.I., Hemley R.J. Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells // International Journal of Plasticity. 2016. Vol. 84. P. 33–57. https://doi.org/10.1016/j.ijplas.2016.04.017
  13. Burenin A.A., Kovtanyuk L.V., Polonik M.V. The forming of one-dimensional residual strain field in the vicinity of a cylindrical continuum defect in an elastic-plastic medium // Journal of Applied Mathematics and Mechanics. 2003. V. 67 (2). P. 315–325 (in Russian)
  14. Aleksandrov S.E., Goldstein R.V. Calculation of the wall thickness of a pipeline under internal pressure with an arbitrary hardening law // Deformation and Fracture of Materials. 2011. P. 15–20 (in Russian)
  15. Aleksandrov S.E., Goldstein R.V. Stress-strain state in an elastoplastic cylindrical tube with free ends. I. General solution // Mechanics of Solids. 2013. V. 48. P. 537–545. https://doi.org/10.3103/S0025654413050099
  16. Sevastyanov G.M. Adiabatic heating effect in elastic-plastic contraction / expansion of spherical cavity in isotropic incompressible material // European Journal of Mechanics – A/Solids. 2021. V. 87. 104223. https://doi.org/10.1016/j.euromechsol.2021.104223
  17. Gent A.N. A new constitutive relation for rubber // Rubber Chemistry and Technology. 1996. V. 69 (1). P. 59–61. https://doi.org/10.5254/1.3538357

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Unscrewing a pipe in a rigid clamp.

下载 (87KB)
3. Fig. 2. Calculation domain (inverted pipe).

下载 (98KB)
4. Fig. 3. Limit value of the geometric parameter for the elastic models of Hencky, the neo-Hookean body and Ghent: if δ = a/b > δ*, then the inverted pipe is elastically deformed, if δ = a/b < δ*, then elastically-plastically.

下载 (168KB)
5. Fig. 4. Width of the elastic zone.

下载 (146KB)
6. Fig. 5. The magnitude of the tension is the sum of the “geometric” and “mechanical” components

下载 (177KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».