НЕРАВНОВЕСНОЕ СВЕРХЗВУКОВОЕ ОБТЕКАНИЕ ЗАТУПЛЕННОЙ ПЛАСТИНЫ ПОД БОЛЬШИМ УГЛОМ АТАКИ

Обложка

Цитировать

Полный текст

Аннотация

Сформулирована компьютерная модель, предназначенная для изучения процессов неравновесной физико-химической газовой динамики при обтекании затупленной пластины конечных размеров сверхзвуковым потоком разреженного воздуха для условий лабораторных экспериментов. Компьютерная модель основана на двухмерных уравнениях Навье–Стокса, сохранения энергии поступательных степеней свободы атомов и молекул, колебательных степеней свободы двухатомных молекул, уравнений химической кинетики и диффузии отдельных компонент частично ионизованного газового потока. Дан анализ основных газодинамических и кинетических процессов при обтекании затупленной пластины при числах Маха М = 10 и 20. Показано образование областей термической неравновесности.

Об авторах

С. Т. Суржиков

Институт проблем механики им. А.Ю. Ишлинского РАН

Автор, ответственный за переписку.
Email: surg@ipmnet.ru
Россия, Москва

Список литературы

  1. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press. Oxford. 1994. 458 p.
  2. Hayes W.D., Probstein R.F. Hypersonic Flow Theory. New York.: Acad.Press, 1959. 464 p.
  3. Маслов А.А., Миронов С.Г., Поплавская Т.В., Ветлуцкий В.Н. О влиянии угла атаки на гиперзвуковое обтекание пластины // ТВТ. 1998. Т. 36. № 5. С. 754–760.
  4. Черный Г.Г. Течение газа с большой сверхзвуковой скоростью. М.: Физматлит, 1959. 220 с.
  5. Лунев В.В. Течение реальных газов с большими скоростями. М.: Физматлит. 2007. 760 с.
  6. Cheng H.K., Hall J.G., Golian T.C., Hertzberg A. Boundary-Layer Displacement and Leading-Edge Bluntness Effects in High-Temperature Hypersonic Flow // JARS. 1961. V. 28. № 5. P. 353–381. https://doi.org/10.2514/8.9002
  7. Yakura J.K. Theory of Entropy Layers and Nose Bluntness in Hypersonic Flow // P. 421–470. https://doi.org/10.2514/5.9781600864810.0421.0470 in book Hypersonic Flow Research / Ed. by Riddel F.R. New York.: Academic Press, 1962. 758 p.
  8. Маслов А.А., Поплавская Т.В., Миронов С.Г., Цирюльников И.С. Волновые процессы в ударном слое на пластине, расположенной под углом атаки // ПМТФ. 2010. Т. 51. № 4. С. 39–47.
  9. Маслов А.А., Миронов С.Г., Кудрявцев А.Н., Поплавская Т.В., Цирюльников И.С. Управление возмущениями в гиперзвуковом ударном слое на пластине нестационарным воздействием с поверхности // Изв. РАН. МЖГ. 2008. № 3. С. 52–161.
  10. Лысенко В.И. Влияние энтропийного слоя на устойчивость сверхзвукового ударного слоя и переход ламинарного пограничного слоя в турбулентный // ПМТФ. 1990. № 6. С. 74–80.
  11. Hall J.G., Eschenroeder A.Q., Marrone P V. Blunt–nose inviscid airflows with coupled nonequilibrium processes // J. Aerosp. Sci. 1962. V. 29. P. 1038–1051.
  12. Mallinson S.G., Mudford N.R., Gai S.L. Leading-edge bluntness effects in hypervelocity flat plate flow // Phys. Fluids. 2020. 32. 046106. https://doi.org/10.1063/1.5138205
  13. Rose P., Stark W. Stagnation Point Heat Transfer Measurements in Dissociated Air // JAS. 1958. № 2. P. 86–97.
  14. Lees L. Laminar Heat Transfer over Blunt-Nosed Bodies at Hypersonic Flight Speeds // Jet Propulsion. 1956. № 4. P. 259–274.
  15. Fay J.A. and Riddel F. Theory of Stagnation Point Heat Transfer in Dissociated Air // JAS. 1958. № 2.
  16. Shang J.S., Surzhikov S.T. Nonequilibrium radiative hypersonic flow simulation // Progress in Aerospace Sciences. 2012. V. 53. P. 46–65.
  17. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука. Гл. редакция физ.-мат. лит. 1966. 687 с.
  18. Clarke J.F., McChesney M. The Dynamics of Real Gases. London.: ButterWorths, 1964. 419 p.
  19. Park C. Nonequilibrium Hypersonic Aerothermodynamics. N.Y.: Wiley-Intern. Publ.1990. 358 p.
  20. Millikan R.C. and White D.R. Systematic of Vibrational Relaxation // J. Chemical Physics.1963. V. 39. № 12. P. 3209–3212.
  21. Bird R.B., Stewart W.E., Lightfoot E.W. Transport Phenomena / 2nd Ed. N.Y.: Wiley. 2002912 p.
  22. Hirschfelder J.O., Curtiss C.F., Bird R.B. The Molecular Theory of Gases and Liquids Revised Edition. Wiley-Interscience, 1964. 1280 p.
  23. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. М.: Наука. 1978. 495 с.
  24. Суржиков С.Т. Компьютерная аэрофизика спускаемых космических аппаратов. Двухмерные модели. М.: Физматлит, 2018. 543 с.
  25. Chase M.W., Davies C.A., Downey J.R. Jr., Frutrip D.J., McDonald R., Syverud A.N. JANAF Thermochemical Tables / Third ed. Parts 1 and 2 // J. Physical and Chemical Reference Data. 1985.V. 14. № 1 Supl. P. 1–1856.
  26. Liou M.-S. A Sequel to AUSM: AUSM+ // J. Comput. Phys. 1996.V. 129. P. 364–382.
  27. Seleznev R.K., Surzhikov S.T. A Generalized Newton Method for Differential Equation of Chemical Kinetics // AIAA 2013-3009. 2013. 17 p.

Дополнительные файлы


© С.Т. Суржиков, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».