Effect of a Conical Extension on Aerosol Sedimentation in the Case of Acoustic Small-Amplitude Oscillations in a Tube

Cover Page

Cite item

Full Text

Abstract

The effect of acoustic low-intensity oscillations in a homogeneous tube and in a tube with a conical extension is experimentally investigated for the same resonator volumes. The resonator shape is shown to have an effect on the oscillation spectrum and intensity and the pressure wave shape at constant values of the resonance frequency and the piston displacement amplitude. An increase in the resonator Q-factor is observable, when the resonator has a conical extension. An accelerated aerosol sedimentation in tubes is revealed in the case of acoustic oscillation with the resonance frequency. In the presence of a conical extension the aerosol drop concentration is reduced by a factor of 1.2 more rapidly than in the case of a uniform tube and three times more rapidly as compared with natural sedimentation. The results obtained can be used for increasing the efficiency of acoustic methods of gas purification from the disperse phase

About the authors

L. R. Shaidullin

Kazan Scientific Center of the Russian Academy of Sciences, Institute of Mechanics and Engineering

Email: shaidullin@imm.knc.ru
420111, Kazan, Tatarstan, Russia

S. A. Fadeev

Kazan Scientific Center of the Russian Academy of Sciences, Institute of Mechanics and Engineering

Author for correspondence.
Email: fadeev.sergei@mail.ru
420111, Kazan, Tatarstan, Russia

References

  1. Зарембо Л.К., Красильников В.А. Введение в нелинейную акустику. М.: Наука, 1966. 519 с.
  2. Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975. 287 с.
  3. Skuchik E. Osnovy akustiki [Fundamentals of acoustics]: translated from English, edited by L.M. Lyamshev. V. 2. M.: Mir, 1976. 542 p.
  4. Li X., Finkbeiner J., Raman G., Daniels C., Steinetz B.M. Optimized shapes of oscillating resonators for generating high-amplitude pressure waves // J. Acoust. Soc. Am. 2004. V. 116. № 5. P. 2814–2821.
  5. Cervenka M., Soltes M., Bednarik M. Optimal shaping of acoustic resonators for the generation of high-amplitude standing waves // J. Acoust. Soc. Am. 2014. V. 136. № 3. P. 1003–1012.
  6. Amundsen D.E., Mortell M.P., Seymour B.R. Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone // Z. Angew. Math. Phys. 2015. V. 66. P. 2647–2663.
  7. Antao D.S., Farouk B. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators // J. Acoust. Soc. Am. 2013. V. 134. № 2. P. 917–932.
  8. Shaidullin L., Fadeev S. Acoustic gas oscillations in a cubic resonator with a throat under small perturbations // Appl. Acoust. 2022. V. 192. 108758.
  9. Feng H., Peng Y., Bin G., Shen Y. Evolution of Flow and Streaming in Exponential Variable Cross-Section Resonators // Appl. Sci. 2020. V. 10 № 5. 1694.
  10. Yanan Yu, Wei Liu, Wen He. A study on finite amplitude standing waves in stepped acoustic resonator // Appl. Acoust. 2023. V. 202. 109164.
  11. Lawrenson C.C., Lipkens B., Lucas T.S., Perkins D.K., VanDoren T.W. Measurements of macrosonic standing waves in oscillating closed cavities // J. Acoust. Soc. Am. 1998. V. 104. № 2. P. 623–636.
  12. Chun Y.-D., Kim Y.-H. Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes // J. Acoust. Soc. Am. 2000. V. 108. № 6. P. 2765–2774.
  13. Hamilton M.F., Ilinskii Y.A., Zabolotskaya E.A. Linear and nonlinear frequency shifts in acoustic resonators with varying cross sections // J. Acoust. Soc. Am. 2001. V. 110. № 1. P. 109–119.
  14. Kar T., Munjal M.L. Analysis and design of conical concentric tube resonators // J. Acoust. Soc. Am. 2004. V. 116. № 1. P. 74–83.
  15. Min Q. Generation of extremely nonlinear standing-wave field using loudspeaker-driven dissonant tube // J. Acoust. Soc. Am. 2018. V. 143. № 3. P. 1472–1476.
  16. Feng H., Peng Y., Zhang X., Li X. Influence of tube geometry on the performance of standing-wave acoustic resonators // J. Acoust. Soc. Am. 2018. V. 144. № 3. P. 1443–1453.
  17. Mortell M.P., Seymour B.R. Nonlinear resonant oscillations in closed tubes of variable cross-section // J. Fluid Mech. 2004. V. 519. P. 183–199.
  18. Mednikov E.P. Acoustic Coagulation and Precipitation of Aerosols. N.-Y.: Springer, 1965. 180 p.
  19. Губайдуллин Д.А., Зарипов Р.Г., Осипов П.П., Ткаченко Л.А., Шайдуллин Л.Р. Волновая динамика газовзвесей и отдельных частиц при резонансных колебаниях // ТВТ. 2021. Т. 59. № 3. С. 443–466.
  20. Yuen W.T., Fu S.C., Kwan J.K. C., Chao C.Y.H. The use of nonlinear acoustics as an energy-efficient technique for aerosol removal // Aerosol Sci. Technol. 2014. V. 48. № 9. P. 907–915.
  21. Amiri M., Sadighzadeh A., Falamaki C. Experimental parametric study of frequency and sound pressure level on the acoustic coagulation and precipitation of PM2.5 // Aerosol Air Qual. Res. 2016. V. 16. № 12. P. 3012–3025.
  22. Gubaidullin D.A., Zaripov R.G., Tkachenko L.A., Shaidullin L.R. Deposition of polydisperse gas suspensions with nonlinear resonance oscillations in a closed tube // J. Acoust. Soc. Am. 2019. V. 145. № 1. P. EL30–EL33.
  23. Gubaidullin D.A., Zaripov R.G., Tkachenko L.A., Shaidullin L.R. Aerosol deposition on resonances at nonlinear oscillations in a closed cross section jump tube // Continuum Mech. Thermodyn. 2022.
  24. Argo T.F., Zadler B.J., Meegan G.D. Size selection of levitated aerosol particulate in an ultrasonic field // J. Acoust. Soc. Am. 2020. V. 147. № 2. P. EL93.
  25. Хмелев В.Н., Голых Р.Н., Нестеров В.А., Боченков А.С., Шалунов А.В. Компьютерное моделирование ультразвуковой агломерации субмикронных частиц с учетом вихревого движения несущей среды // Южно-Сибирский научный вестник. 2021. Вып. 5. № 39. С. 165–170.
  26. Губайдуллин Д.А., Зарипов Р.Г., Ткаченко Л.А., Шайдуллин Л.Р. Экспериментальное исследование осаждения аэрозоля в закрытой трубе с изменяющимся сечением // ТВТ. 2022. Т. 60. № 1. С. 146–148.
  27. Ellier S.E., Kdous W., Bailly Y., Girardot L., Ramel D., Nika P. Acoustic streaming measurements in standing wave resonator using Particle Image Velocimetry // Wave motion. 2014. V. 51. № 8. 1288–1297.
  28. Губайдуллин Д.А., Зарипов Р.Г., Ткаченко Л.А. Резонансные колебания аэрозоля в трубе с диафрагмой в безударно-волновом режиме // ТВТ. 2014. Т. 52. № 6. С. 921–926.
  29. Gubaidullin D.A., Tkachenko L.A., Shaidullin L.R., Fadeev S.A. Investigation of gas oscillations in the closed tube with a cone tip // Lobachevskii J. Math. 2022. V. 43. № 8. 1116–1121.
  30. Губайдуллин Д.А., Зарипов Р.Г., Галиуллин Р.Г., Галиуллина Э.Р., Ткаченко Л.А. Экспериментальное исследование коагуляции аэрозоля в трубе вблизи субгармонического резонанса // ТВТ. 2004. Т. 42. № 5. С. 788–795.
  31. Нигматулин Р.И. Динамика многофазных сред. Т. 1. М.: Наука, 1987. 464 с.
  32. Гуревич М.М. Фотометрия (теория, методы и приборы). Л: Энергоатомиздат, 1983. 272 с.
  33. Скучик Е. Простые и сложные колебательные системы. М.: Мир, 1971. 557 с.
  34. Фукс Н.А. Механика аэрозолей. М.: Изд-во АН СССР, 1955. 352 с.
  35. Einstein A. Investigation on the Theory of Brownian Movement, edited by R. Furth. New York: Dover, 1956.
  36. Desantes J.M., Margot X., Gil A., Fuentes E. Computational study on the deposition of ultrafine particles from Diesel exhaust aerosol // J. Aerosol Sci. 2006 V. 37. P. 1750–1769.
  37. Wu S., Zhu H., Chen Y., Qi C. and Li G. A 3D Monte Carlo Simulation for Aerosol Deposition onto Horizontal Surfaces by Combined Mechanisms of Brownian Diffusion and Gravity Sedimentation // Atmosphere. 2022. V. 13. 1408.
  38. Губайдуллин Д.А., Осипов П.П. Аэрогидродинамика дисперсной частицы. М.: Физматлит, 2020. 176 с.
  39. Gubaidullin D.A., Tkachenko L.A., Fadeev S.A., Shaidullin L.R. Resonance oscillations of gas in a closed tube in presence of a heterogeneous temperature profile // Lobachevskii J. Math. 2022. V. 43. № 8. P. 1110–1115.
  40. Hamilton M.F., Ilinskii Y.A., Zabolotskaya E.A. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width // J. Acoust. Soc. Am. 2003. V. 113. № 1. P. 153–160.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (332KB)
3.

Download (89KB)
4.

Download (138KB)
5.

Download (34KB)
6.

Download (59KB)
7.

Download (112KB)

Copyright (c) 2023 Л.Р. Шайдуллин, С.А. Фадеев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».