Использование байесовского подхода для случая острой ингаляции промышленных соединений Pu-239
- Авторы: Востротин В.В.1
-
Учреждения:
- Южно-Уральский институт биофизики ФМБА России
- Выпуск: Том 69, № 5 (2024)
- Страницы: 42-52
- Раздел: Радиационная безопасность
- URL: https://bakhtiniada.ru/1024-6177/article/view/363947
- DOI: https://doi.org/10.33266/1024-6177-2024-69-5-42-52
- ID: 363947
Цитировать
Полный текст
Аннотация
Введение: Байесовский подход нашёл широкое применение для задач оценки доз внутреннего облучения человека при различных сценариях поступления радионуклидов. В Южно-Уральском институте биофизики накоплен значительный опыт использования байесовского подхода для оценок ожидаемых эффективных доз внутреннего облучения для текущего индивидуального дозиметрического контроля при поступлении различными путями радионуклидов в организм работника. Приписывание типа соединений ‟промежуточные” или ‟медленные” по классификации НРБ-99/2009 при остром ингаляционном поступлении промышленных соединений Pu-239 смещает оценки доз на легкие, что приводит к необходимости разработки новой методики.
Цель: Разработка методики выполнения расчетов с применением байесовского подхода для случая острого ингаляционного поступления промышленных соединений Pu-239 в организм человека и её тестирование на искусственных случаях.
Материал и методы: Представлена методика интерпретации серий результатов измерений активности Pu-239 в суточной моче и/или суточном кале для оценки распределения величины поступления, двух ключевых параметров биокинетической модели Публикации 66 МКРЗ (доля быстрой абсорбции fr и скорость медленной абсорбции в кровь ss), а также годовых взвешенных эквивалентных доз на легкие. Методика позволяет использовать априорную информацию об искомых параметрах и корректно обрабатывать результаты измерения ниже предела обнаружения.
Результаты: Создана программа jDose, реализующая методику за ~20 мин на современном офисном компьютере. Программа была протестирована на искусственных случаях с 10 измерениями активности Pu-239 в суточной моче и 10 в суточном кале в течение первых 10 суток с момента острого ингаляционного поступления при АМАД=1 мкм. Тестирование показало воспроизводимость заданных «истинных» величин параметров в диапазоне (среднее ± 2 стандартных отклонения) при увеличении доли недостоверных результатов измерений. Наибольшее влияние увеличение доли недостоверных результатов измерения оказывало на оценку коэффициента вариации параметра скорости медленной абсорбции в кровь ss.
Ключевые слова
Об авторах
В. В. Востротин
Южно-Уральский институт биофизики ФМБА России
Email: vostrotin@subi.su
Озёрск
Список литературы
- Schadilov A.E., Belosokhov M.V., Levina E.S. A Case of Wound Intake of Plutonium Isotopes and 241am in a Human: Application and Improvement of the Ncrp Wound Model // Health Physics. 2010. V.99. No.4. P.560-567.
- Молоканов А.А., Яценко В.Н., Кухта Б.А., Бурцев С.Л., Соколова Т.Н., Кононыкина Н.Н., Максимова Е.Ю., Яценко О.В. Расследование аварийного случая с нетипичным поступлением плутония и америция-241 в организм работника // Медицина катастроф. 2014. №1. C. 10-11.
- Sugarman S.L., Findley W.M., Toohey R.E., Dainiak N. Rapid Response, Dose Assessment, and Clinical Management of a Plutonium-Contaminated Puncture Wound // Health Physics. 2018. V.115. No.1. P.57-64.
- Молоканов А.А., Кухта Б.А., Галушкин Б.А. Расчет дозы внутреннего облучения и возможные варианты нормирования при раневом поступлении радионуклидов плутония // Медицинская радиология и радиационная безопасность. 2021. Т.65, №6. C. 27-37.
- Vostrotin V.V., Yanov A.Y., Finashov L.V. Assessment of The Committed Effective Dose Equivalent and its Uncertainty from Incidental Internal Tritium Exposure // Radiation Protection Dosimetry. 2022. ncac078.
- Ефимов А.В., Соколова А.Б., Суслова К.Г. Основные итоги научно-практической деятельности Южно-Уральского института биофизики в области радиационной безопасности // Вопросы радиационной безопасности. 2023. Т.111, №3. C.4-15.
- Кочетков О.А. Дозиметрический контроль профессионального внутреннего облучения. Общие требования: Методические указания МУ 2.6.1.065-2014. Утв. Федеральным медико-биологическим агентством 6 ноября 2014 г. М.: ФМБА России, 2014.
- Нормы радиационной безопасности (НРБ-99/2009): Санитарные правила и нормативы СанПиН 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотреднадзора, 2009.
- Востротин В.В., Жданов А.Н., Ефимов А.В. Индивидуальный дозиметрический контроль (ИДК) внутреннего облучения профессиональных работников с помощью компьютерной программы «iDose 2» на основе Байесовского подхода // Вопросы радиационной безопасности. 2016. Т.2, №82. C.45-54.
- Востротин В.В., Жданов А.Н., Ефимов А.В. Тестирование системы индивидуального дозиметрического контроля (ИДК) внутреннего облучения профессиональных работников при ингаляционном поступлении нерастворимых соединений плутония с помощью компьютерной программы iDose 2 // Вопросы радиационной безопасности. 2016. Т.3, №83. C.78-83.
- Востротин В.В., Жданов А.Н., Ефимов А.В. Апробация компьютерной программы iDose 2 применительно к задачам индивидуального дозиметрического контроля (ИДК) внутреннего облучения персонала ФГУП ПО «МАЯК» при ингаляционном поступлении плутония // АНРИ. 2017. Т.4, №91. C.45-54.
- Востротин В.В. Интеграция моделей Oir Мкрз в дозиметрическую систему idose 2 // Медицинская радиология и радиационная безопасность. 2023. Т.68, №5. C.19-27.
- Востротин В.В. Методические указания по методам контроля МУК 2.6.5.045-2016: Указания по методам контроля (МУК) для определения доз внутреннего облучения персонала при стандартных и специальных условиях. Методика выполнения расчётов. МУК 2.6.5.045-2016. Озерск:ЮУрИБФ, 2016.
- Востротин В.В. и др. Патент RU 2650075 C2. Способ индивидуального дозиметрического контроля внутреннего облучения профессиональных работников с помощью компьютерной программы «iDose 2»; опубл. 2018.
- Miller G., Inkret W.C., Little T.T., Martz H.F., Schillaci M.E. Bayesian Prior Probability Distributions for Internal Dosimetry // Radiation Protection Dosimetry. 2001. V.94. No.4. P.347-352.
- Miller G., Martz H.F., Little T.T., Guilmette R. Bayesian Internal Dosimetry Calculations Using Markov Chain Monte Carlo // Radiation Protection Dosimetry. 2002. V.98. No.2. P.191-198.
- Miller G., Martz H., Little T., Bertelli L. Bayesian Hypothesis Testing-Use in Interpretation of Measurements // Health Physics. 2008. V.94. No.3. P.248-254.
- Puncher M., Birchall A. A Monte Carlo Method for Calculating Bayesian Uncertainties in Internal Dosimetry // Radiation Protection Dosimetry. 2008. V.132. No.1. P.1-12.
- Puncher M., Birchall A., Bull R.K. A Method for Calculating Bayesian Uncertainties on Internal Doses Resulting from Complex Occupational Exposures // Radiation Protection Dosimetry. 2012. V.151. No.2. P. 224-236.
- Poudel D., Miller G., Klumpp J.A., Bertelli L., Waters T.L. Bayesian Analysis of Plutonium Bioassay Data at Los Alamos National Laboratory // Health Physics. 2018. V.115. No.6. P.712-726.
- ICRP Publication 66 Human Respiratory Tract Model for Radiological Protection. ICRP 66. Pergamon. Pergamon Press. 1994.
- ICRP Publication 30 (Part 1) Limits for Intakes of Radionuclides by Workers. 1979.
- ICRP Publication 67 Age-dependent Doses to Members of the Public from Intake of Radionuclides. Part 2 Ingestion Dose Coefficients. Pergamon Press. 1993.
- Hastings W.K. Monte Carlo Sampling Methods Using Markov Chains and their Applications // Biometrika. 1970. V.57. No.1. P.97-109.
- Gelman A., Rubin D.B. Inference from Iterative Simulation Using Multiple Sequences // Statistical Science. 1992. V.7. No.4., P.457-472.
- Brooks S.P., Gelman A. General Methods for Monitoring Convergence of Iterative Simulations // Journal of Computational and Graphical Statistics. 1998. V.7. No.4. P.434-455.
- Востротин В.В., Введенский В.Э. Методические указания по методам контроля МУК 2.6.5.XXX-20XX: Методика выполнения расчета доз внутреннего облучения на основе байесовской статистики. НИР Контроль-22. Озерск: ЮУрИБФ, 2024.
- Востротин В.В., Введенский В.Э. Программа jDose, реализующая метод выполнения расчета доз внутреннего облучения на основе Байесовской статистики. НИР Контроль-22. Озерск: ЮУрИБФ, 2023.
Дополнительные файлы

