Дозиметрия трития на клеточном уровне

Обложка

Цитировать

Полный текст

Аннотация

Введение

1. Радиоизотоп тритий и его энергетический спектр

2. Методы расчета доз от излучения радионуклидов

2.1 Общее уравнение для мощности поглощенной дозы

2.2 Мощность поглощенной дозы в зависимости от средней энергии

2.3 Формулы расчета дозы и S-фактора от излучения радионуклидов

2.4 Метод дозовых точечных ядер

2.5 Метод эффективной тормозной способности MIRD

2.6 Геометрический фактор

3. Анализ расчетов S-фактора различными методами

3.1 Значения диапазона CSDA при малых начальных энергиях электронов

3.2 Сравнение расчета S-фактора для низкоэнергетических электронов

3.3 Сравнение расчета S-фактора для трития

4. Оценка расчета S-фактора при отсутствии сферической симметрии

Заключение

Об авторах

С. М. Роднева

Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России

Email: sontyaga@yandex.ru
Москва

Д. В. Гурьев

Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России; Федеральный исследовательский центр химической физики им. Н.Н. Семёнова РАН

Email: sontyaga@yandex.ru
Москва

Список литературы

  1. Shiragap A. Comment on Estimation Methods of Absorbed Dose Due to Tritium // Journal of Radiation Research. 1971. V.2, No. 2. P. 73-86. doi: 10.1269/jrr.12.73.
  2. Alloni D., Cutaia C., Mariotti L., Friedland W., Ottolenghi A. Modeling Dose Deposition and DNA Damage Due to Low-Energy β-Emitters // Radiat. Res. 2014. No. 182. P. 322-330. doi: 10.1667/RR13664.1.
  3. Климанов В.А., Крамер-Агеев Е.А., Смирнов В.В. Дозиметрия ионизирующих излучений: Учебное пособие / Под ред. Климанова В.А. М.: НИЯУ МИФИ, 2015. 740 с.
  4. Stabin M. Nuclear Medicine Dosimetry II // Phys. Med. Biol. 2006. V.51, No. 1. P. 187-202. doi: 10.1088/0031-9155/51/13/R12.
  5. Berger M., Cloutier R., Edwards C., Snyder W. Beta-Ray Dosimetry Calculations with the Use of Point Kernels // Medical Radionuclides: Radiation Dose and Effects. Washington: DC, US Atomic Energy Commission, 1970. P. 63-86.
  6. Prestwich W., Nunes J., Kwok C.S. Beta Dose Point Kernels for Radionuclides of Potential Use in Radioimmunotherapy // J. Nucl. Med. 1989. No. 51. P. 1036-1046.
  7. Simpkin D., Mackic T. EGS4 Monte Carlo Determination of the Beta Dose Kernel in Water // Med. Phys. 1990. No. 17. P. 79-186. doi: 10.1118/1.596565.
  8. Тимофеев Л.В. Расчётные методы дозиметрии бета-излучения. М.: Типография «Ваш формат», 2017. 240 с.
  9. Robertson J., Hughes W., Quastler H., Morowitz H. Intranuclear Irradiation with Tritium-Labeled Thymidine // Proc. 1st. Natl. Biophys. Conf. New Haven: Yale University Press, 1959. P. 278-283.
  10. Goodheart C. Radiation Dose Calculation in Cells Containing Intranuclear Tritium // Rad. Res. 1961. No. 15. P. 767-773. doi: 10.2307/3571113.
  11. Saito M., Ishida M., Travis C. Dose-Modification Factor for Accumulated Dose to Cell Nucleus Due to Protein-Bound3H // Health. Phys. 1989. V.56, No. 6. P. 869-874. doi: 10.1097/00004032-198906000-00004.
  12. Степаненко В.Ф., Яськова Е.К., Белуха И.Г., Петриев В.М., Скворцов В.Г., Колыженков Т.В., Петухов А.Д., Дубов Д.В. Расчёты доз внутреннего облучения нано-, микро- и макро-биоструктур электронами, бета-частицами и квантовым излучением различной энергии при разработках и исследованиях новых РФП в ядерной медицине // Радиация и риск. 2015. Т.24, № 1, С. 35-60.
  13. Howell R., Rao D., Sastry K. Macroscopic Dosimetry for Radioimmunotherapy: Nonuniform Activity Distributions in Solid Tumors // Med. Phys. 1989. No. 16. P. 66-74. doi: 10.1118/1.596404.
  14. Goddu S., Howell R., Rao D. Cellular Dosimetry: Absorbed Fractions for Monoenergetic Electron and Alpha Particle Sources and S-Values for Radionuclides Uniformly Distributed in Different Cell Compartments // J. Nucl. Med. 1994. No. 35. P. 303-316.
  15. Goddu S., Howell R., Bouchet L., Bolch W., Rao D. Mird Cellular S Values: Self-Absorbed Dose Per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments. Reston, VA, USA: Society of Nuclear Medicine, 1997.
  16. Cole A. Absorption of 20-eV to 50.000-eV Electron Beams and Plastic // Radiat. Res. 1969. No. 38. P. 7-33.
  17. Sastry K., Haydock C., Basha A., Rao D. Electron Dosimetry for Radioimmunotherapy: Optimal Electron Energy // Radial. Prot. Dosim. 1985. No. 13. P. 249-252. doi: 10.1093/rpd/13.1-4.249.
  18. Gardin I., Faraggi M., Hue E., Вок B. Modelling of the Relationship between Cell Dimensions and Mean Dose Delivered to the Cell Nucleus: Application to Five Radionuclides Used in Nuclear Medicine // Phys. Med. Biol. 1995. No. 40. P. 1001-1014. doi: 10.1088/0031-9155/40/6/003.
  19. International Commission on Radiation Units and Measurements. Linear Energy Transfer. ICRU Report 16. 1970.
  20. International Commission on Radiation Units and Measurements. Stopping Powers for Electrons and Positrons. ICRU Report 37. 1984a.
  21. International Commission on Radiation Units and Measurements. Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications. ICRU Report 90. 1996.
  22. Siragusa M., Baioeco G., Fredericia P., Friedland W., Gser T., Ottolenghi A., et al. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters // Radiat Res. 2017. V.188, No. 2. P. 204-220. doi: 10.1667/RR14683.1.
  23. Incerti S., Kyriakou I., Bernal M., Bordage M., Francis Z., Guatelli S., Geant4-DNA Example Applications for Track Structure Simulations in Liquid Water: a Report from the Geant4-DNA Project // Med Phys. 2018. No. 45. P. 722-739. doi: 10.1002/mp.13048.
  24. Berger M., Seltzer S. Tables of Energy Losses and Ranges of Electrons and Positrons. NASA SP-3012. 1964.
  25. Akkerman A., Akkerman E. Characteristics of Electron Inelastic Interactions in Organic Compounds and Water over the Energy Range 20-10000 eV // Journal of Applied Physics. 1999. V.86, No. 10. P. 5809-5816. doi: 10.1063/1.371597.
  26. NCRP. Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material. NCRP Report No. 63. Bethesda: National Council on Radiation Protection and Measurements, 1979.
  27. Sefl M., Incerti S., Papamichacl G., Emfietzoglou D. Calculation of Cellular S-Values Using Geant4-DNA: The Effect of Cell Geometry // Appl. Radial. Isot. 2015. No. 104. P. 113-123. doi: 10.1016/j.apradiso.2015.06.027.
  28. Salim R., Taherparvar P. Monte Carlo Single-Cell Dosimetry Using Geant4-DNA: the Effects of Cell Nucleus Displacement and Rotation on Cellular S Values // Radial. Environ Biophys. 2019. No. 58. P. 353-371. doi: 10.1007/s00411-019-00788-z.
  29. Vaziri В., Wu H., Dhawan A., Du P., Howell R. MIRD Pamphlet No. 25: MIRDcell V2.0 Software Tool for Dosimetric Analysis of Biologic Response of Multicellular Populations // J. Nucl. Med. 2014. No. 55. P. 1557-1564. doi: 10.2967/jnumed.113.131037.
  30. Chao T., Wang C., Li J., Li C., Tung C. Cellular- and Micro-Dosimetry of Heterogeneously Distributed Tritium // Int. J. Radiat. Biol. 2011. V.88, No. 1-2. P. 151-157. doi: 10.3109/09553002.2011.595876.
  31. Siragusa M., Fredericia P., Jensen M., Groesser T. Radiobiological Effects of Tritiated Water Short-Term Exposure on V79 Clonogenic Cell Survival // Int. J. Radiat. Biol. 2018. V.94, No. 2. P. 157-165. doi: 10.1080/09553002.2018.1419301.
  32. Saito M., Ishida M., Streffer C., Molls M. Estimation of Absorbed Dose in Cell Nuclei Due to DNA-Bound3H // Health Phys. 1985. No. 48. P. 465-473. doi: 10.1097/00004032-198504000-00009.
  33. Nettleton J., Lawson R. Cellular Dosimetry of Diagnostic Radionuclides for Spherical and Ellipsoidal Geometry // Phys. Med. Biol. 1996. No. 41. P. 1845-1854. doi: 10.1088/0031-9155/41/9/018.
  34. Falzone N., Fernandez-Varea J., Flux G., Vallis K. Monte Carlo Evaluation of Auger Electron-Emitting Theranostic Radionuclides // J. Nucl. Med. 2015. No. 56. P. 1441-1446. doi: 10.2967/jnumed.114.153502.
  35. Salim R., Taherparvar P. Cellular S Values in Spindle-Shaped Cells: a Dosimetry Study on more Realistic Cell Geometries Using Geant4-DNA Monte Carlo Simulation Toolkit // Annals of Nuclear Medicine. 2020. No. 34. P. 742-756. doi: 10.1007/s12149-020-01498-z.
  36. Ulanovsky A., Pröhl G. A Practical Method for Assessment of Dose Conversion Coefficients for Aquatic Biota // Radiat. Environ. Biophys. 2006. V.45, No. 3. P. 203-214. doi: 10.1007/s00411-006-0061-4.
  37. Amato E., Lizio D., Baldari S. Absorbed Fractions for Electrons in Ellipsoidal Volumes // Phys. Med. Biol. 2011. V.56, No. 2. P. 357-365. doi: 10.1088/0031-9155/56/2/005.
  38. Сазыкина Т.Г., Крышев Л.И. Модель расчёта поглощения энергии от инкорпорированных излучателей моноэнергетических электронов в объектах природной биоты // Радиация и риск. 2021. Т.30, № 2. С. 113-122.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».