🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Potential Applications of Artificial Intelligence in Muscle Tissue Assessment by Computed Tomography Images: a Literature Review

Cover Page

Cite item

Full Text

Abstract

Background: Syndromes and diseases in which the qualitative and quantitative composition of the human body change are receiving increasing attention. Sarcopenia is a disease characterized by generalized loss of muscle mass and strength, affecting both able-bodied and elderly populations, with a global prevalence in the general population of up to 10% according to the literature. According to the 2019 European Working Group on Sarcopenia in the Elder People consensus, the gold standard of medical imaging for the assessment of muscle mass loss is computed tomography (CT) and magnetic resonance imaging (MRI). With the increasing use of artificial intelligence (AI) technologies, there is an opportunity to analyze large amounts of medical data, including CT images.

Purpose: To acquaint the general audience with the current work on the medical imaging of significant changes in skeletal muscle tissue from CT images using AI technologies, including highlighting the available options for their clinical and scientific application.

Search and selection methodology: Publications have been searched by advanced search query in bibliographic databases PubMed and eLibrary.ru.

Results: 46 selected original articles published between 2019 and 2024 have been analyzed.

The variants of clinical and scientific application of AI algorithms are reviewed. The main purpose of clinical application is to assess the prognostic value of morphometric indices of sarcopenia for a wide range of diseases – oncological (most of the works) and chronic, as well as for conditions after surgical interventions. The acquisition of additional morphometric indices of not only muscle but also adipose tissue were noted in works where it had been carried out and had clinical significance. The main problem existing at present time is highlighted, which is the lack of a clear place in the clinical diagnostic paradigm. The main option for scientific application is the processing of large amounts of data for population studies. Details of the methodology of CT body composition assessment, including the most commonly used skeletal muscle index thresholds for CT diagnosis of sarcopenia, are given, and the technical aspects of the AI algorithms used were summarised. In conclusion, the high interest of researchers in this topic was noted, and prospects for further research in this area and application in practice were outlined.

About the authors

A. K. Smorchkova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SmorchkovaAK@zdrav.mos.ru
Moscow

A. V. Petraikin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SmorchkovaAK@zdrav.mos.ru
Moscow

Yu. A. Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SmorchkovaAK@zdrav.mos.ru
Moscow

References

  1. Cruz-Jentoft A.J., Bahat G., Bauer J., et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48;1:16-31. doi: 10.1093/ageing/afy169
  2. Correa-de-Araujo R., Addison O., Miljkovic I., et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: an Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020;11:963. doi: 10.3389/fphys.2020.00963
  3. Kelly B.S., Judge C., Bollard S.M., et al. Radiology Artificial Intelligence: a Systematic Review and Evaluation of Methods (Raise). Eur Radiol. 2022;32;11:7998-8007. doi: 10.1007/s00330-022-08784-6
  4. Lenchik L., Boutin R. Sarcopenia: Beyond Muscle Atrophy and into the New Frontiers of Opportunistic Imaging, Precision Medicine, and Machine Learning. Semin Musculoskelet Radiol. 2018;22;03:307-322. doi: 10.1055/s-0038-1641573
  5. Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep Learning-Based Muscle Segmentation and Quantification at Abdominal CT: Application to a Longitudinal Adult Screening Cohort for Sarcopenia Assessment. Br J Radiol. 2019;92;1100:20190327. doi: 10.1259/bjr.20190327
  6. Gillen J., Mills K.A., Dvorak J., et al. Imaging Biomarkers of Adiposity and Sarcopenia as Potential Predictors for Overall Survival among Patients with Endometrial Cancer Treated with Bevacizumab. Gynecol Oncol Rep. 2019;30:100502. doi: 10.1016/j.gore.2019.100502
  7. Lenchik L., Barnard R., Boutin R.D., et al. Automated Muscle Measurement on Chest CT Predicts All-Cause Mortality in Older Adults From the National Lung Screening Trial. J Gerontol Ser A. 2021;76;2:277-285. doi: 10.1093/gerona/glaa141
  8. Magudia K., Bridge C.P., Bay C.P., et al. Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-Specific Reference Curves. Radiology. 2021;298;2:319-329. doi: 10.1148/radiol.2020201640
  9. Fischer S., Clements S., McWilliam A., et al. Influence of Abiraterone and Enzalutamide on Body Composition in Patients with Metastatic Castration Resistant Prostate Cancer. Cancer Treat Res Commun. 2020;25:100256. doi: 10.1016/j.ctarc.2020.100256.
  10. Lee J., Kim E.Y., Kim E., et al. Longitudinal Changes in Skeletal Muscle Mass in Patients with Advanced Squamous Cell Lung Cancer. Thorac Cancer. 2021;12;11:1662-1667. doi: 10.1111/1759-7714.13958
  11. Yoon J.K., Lee S., Kim K.W., et al. Reference Values for Skeletal Muscle Mass at the Third Lumbar Vertebral Level Measured by Computed Tomography in a Healthy Korean Population. Endocrinol Metab. 2021;36;3:672-677. doi: 10.3803/EnM.2021.1041
  12. Hsu T.M.H., Schawkat K., Berkowitz S.J., et al. Artificial Intelligence to Assess Body Composition on Routine Abdominal CT Scans and Predict Mortality in Pancreatic Cancer – a Recipe for Your Local Application. Eur J Radiol. 2021;142:109834. doi: 10.1016/j.ejrad.2021.109834
  13. Lee S.A., Jang I.Y., Park S.Y., et al. Benefit of Sarcopenia Screening in Older Patients Undergoing Surgical Aortic Valve Replacement. Ann Thorac Surg. 2022;113;6:2018-2026. doi: 10.1016/j.athoracsur.2021.06.067
  14. Kong H.H., Kim K.W., Ko Y.S., et al. Longitudinal Changes in Body Composition of Long-Term Survivors of Pancreatic Head Cancer and Factors Affecting the Changes. J Clin Med. 2021;10;15:3436. doi: 10.3390/jcm10153436
  15. Kim J., Han S.H., Kim H. Detection of Sarcopenic Obesity and Prediction of Long‐Term Survival in Patients with Gastric Cancer Using Preoperative Computed Tomography and Machine Learning. J Surg Oncol. 2021;124;8:1347-1355. doi: 10.1002/jso.26668
  16. Jullien M., Tessoulin B., Ghesquières H., et al. Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger than 60 Years. Cancers. 2021;13;18:4503. doi: 10.3390/cancers13184503
  17. Han Q., Kim S.I., Yoon S.H., et al. Impact of Computed Tomography-Based, Artificial Intelligence-Driven Volumetric Sarcopenia on Survival Outcomes in Early Cervical Cancer. Front Oncol. 2021;11:741071. doi: 10.3389/fonc.2021.741071
  18. Ying T., Borrelli P., Edenbrandt L., et al. Automated Artificial Intelligence-Based Analysis of Skeletal Muscle Volume Predicts Overall Survival after Cystectomy for Urinary Bladder Cancer. Eur Radiol Exp. 2021;5;1:50. doi: 10.1186/s41747-021-00248-8
  19. Laur O., Weaver M.J., Bridge C., et al. Computed Tomography-Based Body Composition Profile as a Screening Tool for Geriatric Frailty Detection. Skeletal Radiol. 2022;51;7:1371-1380. doi: 10.1007/s00256-021-03951-0
  20. Kim S.I., Chung J.Y., Paik H., et al. Prognostic Role of Computed Tomography-Based, Artificial Intelligence-Driven Waist Skeletal Muscle Volume in Uterine Endometrial Carcinoma. Insights Imaging. 2021;12;1:192. doi: 10.1186/s13244-021-01134-y
  21. Faron A., Opheys N.S., Nowak S., et al. Deep Learning-Based Body Composition Analysis Predicts Outcome in Melanoma Patients Treated with Immune Checkpoint Inhibitors. Diagnostics. 2021;11;12:2314. doi: 10.3390/diagnostics11122314
  22. Massaad E., Bridge C.P., Kiapour A., et al. Evaluating Frailty, Mortality, and Complications Associated with Metastatic Spine Tumor Surgery Using Machine Learning–Derived Body Composition Analysis. J Neurosurg Spine. 2022;37;2:263-273. doi: 10.3171/2022.1.SPINE211284
  23. Somasundaram E., Castiglione J.A., Brady S.L., Trout A.T. Defining Normal Ranges of Skeletal Muscle Area and Skeletal Muscle Index in Children on CT Using an Automated Deep Learning Pipeline: Implications for Sarcopenia Diagnosis. Am J Roentgenol. 2022;219;2:326-336. doi: 10.2214/AJR.21.27239
  24. Beetz N.L., Geisel D., Shnayien S., et al. Effects of Artificial Intelligence-Derived Body Composition on Kidney Graft and Patient Survival in the Eurotransplant Senior Program. Biomedicines. 2022;10;3:554. doi: 10.3390/biomedicines10030554
  25. Beetz N.L., Geisel D., Maier C., et al. Influence of Baseline CT Body Composition Parameters on Survival in Patients with Pancreatic Adenocarcinoma. J Clin Med. 2022;11;9:2356. doi: 10.3390/jcm11092356
  26. Kim D.W., Ahn H., Kim K.W., et al. Prognostic Value of Sarcopenia and Myosteatosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Korean J Radiol. 2022;23;11:1055. doi: 10.3348/kjr.2022.0277
  27. Hosch R., Kattner S., Berger M.M., et al. Biomarkers Extracted by Fully Automated Body Composition Analysis from Chest CT Correlate with SARS-CoV-2 Outcome Severity. Sci Rep. 2022;12;1:16411. doi: 10.1038/s41598-022-20419-w
  28. Nandakumar B., Baffour F., Abdallah N.H., et al. Sarcopenia Identified by Computed Tomography Imaging Using a deep Learning–Based Segmentation Approach Impacts Survival in Patients with Newly Diagnosed Multiple Myeloma. Cancer. 2023;129;3:385-392. doi: 10.1002/cncr.34545
  29. Lee J.Y., Kim K.W., Ko Y., et al. Serial Changes in Body Composition and the Association with Disease Activity during Treatment in Patients with Crohn’s Disease. Diagnostics. 2022;12;11:2804. doi: 10.3390/diagnostics12112804
  30. Keyl J., Hosch R., Berger A., et al. Deep Learning‐Based Assessment of Body Composition and Liver Tumour Burden for Survival Modelling in Advanced Colorectal Cancer. J Cachexia Sarcopenia Muscle. 2023;14;1:545-552. doi: 10.1002/jcsm.13158
  31. Lee J.H., Choi S.H., Jung K.J., Goo J.M., Yoon S.H. High Visceral Fat Attenuation and Long‐Term Mortality in a Health Check‐Up Population. J Cachexia Sarcopenia Muscle. 2023;14;3:1495-1507. doi: 10.1002/jcsm.13226
  32. Borrelli A., Pecoraro M., Del Giudice F., et al. Standardization of Body Composition Status in Patients with Advanced Urothelial Tumors: the Role of a CT-Based AI-Powered Software for the Assessment of Sarcopenia and Patient Outcome Correlation. Cancers. 2023;15;11:2968. doi: 10.3390/cancers15112968
  33. He M., Chen Z.F., Zhang L., et al. Associations of Subcutaneous Fat Area and Systemic Immune-inflammation Index with Survival in Patients with Advanced Gastric Cancer Receiving Dual PD-1 and HER2 Blockade. J Immunother Cancer. 2023;11;6:e007054. doi: 10.1136/jitc-2023-007054
  34. Park S.J., Yoon J.H., Joo I., Lee J.M. Newly Developed Sarcopenia after Liver Transplantation, Determined by a Fully Automated 3D Muscle Volume Estimation on Abdominal CT, can Predict Post-Transplant Diabetes Mellitus and Poor Survival Outcomes. Cancer Imaging. 2023;23;1:73. doi: 10.1186/s40644-023-00593-4
  35. Mangana Del Rio T., Sacleux S.C., Vionnet J., et al. Body Composition and Short-Term Mortality in Patients Critically Ill with Acute-on-Chronic Liver Failure. JHEP Rep. 2023;5;8:100758. doi: 10.1016/j.jhepr.2023.100758
  36. Nowak S., Kloth C., Theis M., et al. Deep Learning–Based Assessment of CT Markers of Sarcopenia and Myosteatosis for Outcome Assessment in Patients with Advanced Pancreatic Cancer after High-Intensity Focused Ultrasound Treatment. Eur Radiol. Published Online August 12, 2023. 2024 Jan;34;1:279-286. doi: 10.1007/s00330-023-09974-6
  37. Choi S., Yoon S.H., Sung J., Lee J.H. Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT ‐Based Body Composition Analysis. Ann Neurol. 2023;94;6:1116-1125. doi: 10.1002/ana.26775
  38. Kim M., Lee S.M., Son I.T., Park T., Oh B.Y. Prognostic Value of Artificial Intelligence-Driven, Computed Tomography-Based, Volumetric Assessment of the Volume and Density of Muscle in Patients with Colon Cancer. Korean J Radiol. 2023;24;9:849. doi: 10.3348/kjr.2023.0109
  39. Tonnesen P.E., Mercaldo N.D., Tahir I., et al. Muscle Reference Values From Thoracic and Abdominal CT for Sarcopenia Assessment: the Framingham Heart Study. Invest Radiol. 2024 Mar 1;59;3:259-270. doi: 10.1097/RLI.0000000000001012
  40. Souza A.C., Rosenthal M.H., Moura F.A., et al. Body Composition, Coronary Microvascular Dysfunction, and Future Risk of Cardiovascular Events Including Heart Failure. Jacc Cardiovasc Imaging. . 2024 Feb;17;2:179-191. doi: 10.1016/j.jcmg.2023.07.014
  41. Blankemeier L., Yao L., Long J., et al. Skeletal Muscle Area on CT: Determination of an Optimal Height Scaling Power and Testing for Mortality Risk Prediction. Am J Roentgenol. 2024;222;1:e2329889. doi: 10.2214/AJR.23.29889
  42. Just I.A., Schoenrath F., Roehrich L., et al. Artificial Intelligence‐Based Analysis of Body Composition Predicts Outcome in Patients Receiving Long‐Term Mechanical Circulatory Support. J Cachexia Sarcopenia Muscle. 2024;15;1:270-280. doi: 10.1002/jcsm.13402
  43. Keyl J., Bucher A., Jungmann F., et al. Prognostic Value of Deep Learning-Derived Body Composition in Advanced Pancreatic Cancer – a Retrospective Multicenter Study. Esmo Open. 2024;9;1:102219. doi: 10.1016/j.esmoop.2023.102219
  44. Lee M.W., Jeon S.K., Paik W.H., et al. Prognostic Value of Initial and Longitudinal Changes in Body Composition in Metastatic Pancreatic Cancer. J Cachexia Sarcopenia Muscle. 2024;15;2:735-745. doi: 10.1002/jcsm.13437
  45. Weston A.D., Grossardt B.R., Garner H.W., et al. Abdominal Body Composition Reference Ranges and Association with Chronic Conditions in an Age- and Sex-Stratified Representative Sample of a Geographically Defined American Population. J Gerontol A Biol Sci Med Sci. 2024;79;4:glae055. doi: 10.1093/gerona/glae055
  46. Suthakaran R., Cao K., Arafat Y., et al. Body Composition Assessment by Artificial Intelligence Can Be a Predictive Tool for Short-Term Postoperative Complications in Hartmann’s Reversals. BMC Surg. 2024;24;1:111. doi: 10.1186/s12893-024-02408-0
  47. Pekař M., Jiravský O., Novák J., et al. Sarcopenia and Adipose Tissue Evaluation by Artificial Intelligence Predicts the Overall Survival after TAVI. Sci Rep. 2024;14;1:8842. doi: 10.1038/s41598-024-59134-z
  48. Hanna P.E., Ouyang T., Tahir I., et al. Sarcopenia, Adiposity and Large Discordance between Cystatin C and Creatinine‐Based Estimated Glomerular Filtration Rate in Patients with Cancer. J Cachexia Sarcopenia Muscle. 2024;15;3:1187-1198. doi: 10.1002/jcsm.13469
  49. Cho S.W., Baek S., Han S., et al. Metabolic Phenotyping with Computed Tomography Deep Learning for Metabolic Syndrome, Osteoporosis and Sarcopenia Predicts Mortality in Adults. J Cachexia Sarcopenia Muscle. 2024 Aug;15;4:1418-1429. doi: 10.1002/jcsm.13487
  50. Sakamoto K., Hiraoka S. ichiro, Kawamura K., et al. Automated Evaluation of Masseter Muscle Volume: deep Learning Prognostic Approach in Oral Cancer. BMC Cancer. 2024;24;1:128. doi: 10.1186/s12885-024-11873-y
  51. Shen W., Punyanitya M., Wang Z., et al. Total Body Skeletal Muscle and Adipose Tissue Volumes: Estimation from a Single Abdominal Cross-Sectional Image. J Appl Physiol. 2004;97;6:2333-2338. doi: 10.1152/japplphysiol.00744.2004
  52. Martin L., Birdsell L., MacDonald N., et al. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J Clin Oncol. 2013;31;12:1539-1547. doi: 10.1200/JCO.2012.45.2722
  53. Fearon K., Strasser F., Anker S.D., et al. Definition and Classification of Cancer Cachexia: an International Consensus. Lancet Oncol. 2011;12;5:489-495. doi: 10.1016/S1470-2045(10)70218-7
  54. Prado C.M., Lieffers J.R., McCargar L.J., et al. Prevalence and Clinical Implications of Sarcopenic Obesity in Patients with Solid Tumours of the Respiratory and Gastrointestinal Tracts: a Population-Based Study. Lancet Oncol. 2008;9;7:629-635. doi: 10.1016/S1470-2045(08)70153-0
  55. Carey E.J., Lai J.C., Wang C.W., et al. A Multicenter Study to Define Sarcopenia in Patients with End-Stage Liver Disease. Liver Transplant off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2017;23;5:625-633. doi: 10.1002/lt.24750
  56. Jong S.L., Young S.K., Eun Young K., Wook J. Prognostic Significance of CT-Determined Sarcopenia in Patients with Advanced Gastric Cancer | PLOS ONE. 2018 Aug20;13:8:e0202700. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202700
  57. Morley J.E., Anker S.D., von Haehling S. Prevalence, Incidence, and Clinical Impact of Sarcopenia: Facts, Numbers, and Epidemiology-Update 2014. J Cachexia Sarcopenia Muscle. 2014;5;4:253-259. doi: 10.1007/s13539-014-0161-y
  58. Prado C.M.M., Baracos V.E., McCargar L.J., et al. Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to Tumor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine Treatment. Clin Cancer Res off J Am Assoc Cancer Res. 2009;15;8:2920-2926. doi: 10.1158/1078-0432.CCR-08-2242
  59. Zhuang C.L., Huang D.D., Pang W.Y., et al. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival after Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Medicine (Baltimore). 2016;95;13:e3164. doi: 10.1097/MD.0000000000003164
  60. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science. Springer International Publ., 2015:234-241. doi: 10.1007/978-3-319-24574-4_28
  61. Trägårdh E, Borrelli P, Kaboteh R, et al. Recomia – a Cloud-Based Platform for Artificial Intelligence Research in Nuclear Medicine and Radiology. EJNMMI Phys. 2020;7:51. doi: 10.1186/s40658-020-00316-9
  62. Myronenko A. 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Published Online 2018 Nov;1:311-320. doi: 10.48550/ARXIV.1810.11654
  63. Huang G., Liu Z., van der Maaten L., Weinberger K.Q. Densely Connected Convolutional Networks. 2016;1:069-93. Published online January 28, 2018. doi: 10.48550/arXiv.1608.06993
  64. Yushkevich P.A., Piven J., Hazlett H.C., et al. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. NeuroImage. 2006;31;3:1116-1128. doi: 10.1016/j.neuroimage.2006.01.015
  65. Сморчкова А.К., Петряйкин А.В., Артюкова З.Р. MosMedData: набор диагностических компьютерно-томографических изображений органов брюшной полости на уровне L3 позвонка с сегментацией скелетной мышечной и внутримышечной жировой тканей: Свидетельство о государственной регистрации базы данных №2023624494; Российская Федерация; заявл. 28.11.2023; опубл. 08.12.2023 [Smorchkova A.K., Petryaykin A.V., Artyukova Z.R. MosMedData: Nabor Diagnosticheskikh Komp’yuterno-Tomograficheskikh Izobrazheniy Organov Bryushnoy Polosti na Urovne L3 Pozvonka s Segmentatsiyey Skeletnoy Myshechnoy i Vnutrimyshechnoy Zhirovoy Tkaney = MosMedData: a Set of Diagnostic Computed Tomographic Images of Abdominal Organs at the Level of the L3 Vertebra with Segmentation of Skeletal Muscle and Intramuscular Adipose Tissue. Certificate of State Registration of the Database No. 2023624494. Russian Federation, declared 28.11.2023, published 08.12.2023 (In Russ.)].
  66. van Vugt J.L.A., Coebergh van den Braak R.R.J., Schippers H.J.W., et al. Contrast-Enhancement Influences Skeletal Muscle Density, but not Skeletal Muscle Mass, Measurements on Computed Tomography. Clin Nutr Edinb Scotl. 2018;37;5:1707-1714. doi: 10.1016/j.clnu.2017.07.007
  67. Васильев Ю.А., Владзимирский А.В., Омелянская О.В., Арзамасов К.М., Четвериков С.Ф., Румянцев Д.А., Зеленова М.А. Методология тестирования и мониторинга программного обеспечения на основе технологий искусственного интеллекта для медицинской диагностики // Digital Diagnostics. 2023. Т.4. №3. C. 252-267 [Vasil’yev Yu.A., Vladzimirskiy A.V., Omelyanskaya O.V., Arzamasov K.M., Chetverikov S.F., Rumyantsev D.A., Zelenova M.A. Methodology of Testing and Monitoring Software Based on Artificial Intelligence Technologies for Medical Diagnostics. Digital Diagnostics. 2023;4;3:252-267 (In Russ.)]. doi: 10.17816/DD321971

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».