Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 55, № 7 (2019)

Article

Removal of Organic Compounds Found in the Wastewater through Electrochemical Advanced Oxidation Processes: A Review

Damodhar Ghime ., Prabir Ghosh .

Аннотация

Existence of an organic compounds, especially aromatic compounds in wastewater is observed as an emerging environmental problem because of their harmful effects on living organisms even at low concentration. Conventional wastewater treatment processes are ineffectual for an elimination of refractory organic compounds. Nowadays, it’s a challenge to reduce negative impact of such hazardous compounds on environment. So, Advanced Oxidation Processes (AOPs) have received more attention over a year of decades towards removal of an aromatic compounds. Among AOPs, Electrochemical Advanced Oxidation Processes (EAOPs), especially “Anodic Oxidation” and “Electro-Fenton,” have revealed good potential for mitigation of pollution caused by the presence of aqueous organic compounds in wastewater. This review has introduced an innovative collection of current knowledge on Electro-Fenton and Anodic oxidation type of processes. Fundamentals of these processes, electrolysers used, reaction mechanisms, experimental parameters affecting these electro-chemical treatment technologies with various applications are discussed in detail. This report also discusses effectiveness of EAOPs for elimination of organic compounds in aqueous systems.

Russian Journal of Electrochemistry. 2019;55(7):591-620
pages 591-620 views

Evaluation Behavior for the Adsorptive of Ca(II) and Mg(II) Ions (Hardness of Water) from Water by Modified Copper Based on Metal Organic Frameworks and Potentiometric Sensors

Tamer Awad Ali ., El Salam H., Ali H., Moustafa Y.

Аннотация

This study presents adsorption of Ca(II) and Mg(II) ions from water at different concentration. This causes problems such as corrosion and scaling. MOF–Cu (Cu3(BTC)2) and modified MOF–Cu were study as an adsorbent of Ca2+ and Mg2+ ions from water. The morphology and structure of the MOFs adsorbents were characterized by XRD, FT-IR, nitrogen adsorption/desorption and SEM methods. A batch test with various conditions was studied. The adsorption kinetics and isotherms are described. The experimental data were fitted to second-order-kinetics and Langmuir models. The adsorption capacity of MOF–Cu–GSH (4.6 mg/g (90.2%) and 6.2 mg/g (87.2%)) is higher than Cu3(BTC)2 (9.2 mg/g (81.2%) and 11.3 mg/g (77.4%)) for Ca(II) and Mg(II) ions respectively, through 6 h, 50 ppm, pH 7, 50 mg and 30°C. These potentiometric sensors respond to Mg(II) and Ca(II) ions in the wide linear concentration range of 1.0 × 10–2–1.0 × 10–7 and 1.0 × 10–2–1.3 × 10–7 mol L–1 with Nernstian slopes of 30.04 ± 0.98 and 29.15 ± 0.44 mV decade–1 of Mg(II) and Ca(II) ions and detection limit of 1 × 10–7 and 1.3 × 10–7 mol L–1 for Mg–CPE (electrode IV) and Ca–CPE (electrode X), respectively. The electrodes were pH independent within the range of 2.5–7.5 and 3.0–8.0, with a fast response time of about 7 and 10 s for electrode (IV) and electrode (X), respectively. The results obtained were compared well with those obtained using inductively coupled plasma atomic emission spectrometry (ICP–AES).

Russian Journal of Electrochemistry. 2019;55(7):621-636
pages 621-636 views

Designed Novel Carbazole Based Electrolyte Additive for Overcharge Protection of Lithium‑Ion Batteries

Madram A., Zarandi M., Beni A., Bayat Y.

Аннотация

9-Phenyl-9H-carbazole (9P9HC) organic monomer which contains phenyl moiety used as new overcharge protection additive in electrolyte of LiFePO4 based lithium‑ion batteries (LIBs) was investigated in this paper. The cyclic voltammetry experimental results showed that the 9P9HC monomer could be electro‑polymerized to form a conductive polymer on the cathode surface. Therefore, it could prevent the batteries from voltage run away during overcharge. The charge–discharge tests of the investigated LiFePO4/C batteries demonstrated that the 9P9HC additive could be control the investigated LIB voltage at the safe value less than 4.2 V. Furthermore, it was notable that 9P9HC has no significant impact on the charge–discharge performance of the investigated batteries at normal charge–discharge condition during 50 cycles.

Russian Journal of Electrochemistry. 2019;55(7):637-642
pages 637-642 views

Investigation of Proton Diffusion Coefficient for PbO2 Prepared from Intermediate Oxides

Rahmani L., Fitas R., Messai A., Ayesh A.

Аннотация

Lead dioxide was extracted from used batteries, and used to synthesize the following intermediate oxides by heating at different temperatures: Pb12O19, Pb12O17, and Pb3O4. Each of the prepared intermediate oxide was subject to sulfuric acid with 1.28 g cm–3. X-ray diffraction (XRD) results showed that the sample prepared from Pb12O19 only had a pattern similar to that of the starting PbO2 with α-PbO2 and β-PbO2 phases. The measurements of H+ proton diffusion coefficient (DH+) of the different samples showed that the sample prepared from Pb12O19 had better electrochemical performances than the starting PbO2. This kinetics reflects the proton insertion mechanism in PbO2, i.e. the sample prepared from Pb12O19 has a large amount of structural water in OH hydroxyl form. This amount contributes more in the PbO2 reduction mechanism. In addition, the DH+ value of the sample prepared from Pb12O19 is significantly higher than that of starting PbO2, which confirms this hypothesis. X-ray diffraction analysis, thermogravimetric and differential thermogravimetry analysis, and cyclic voltammetry reduction at different scanning rates were used to investigate the samples. This work contributes to environment preservation by recycling of used lead dioxide and reduction of the hazard of its disposal on water.

Russian Journal of Electrochemistry. 2019;55(7):643-650
pages 643-650 views

A Highly Sensitive Determination for the Melamine in Milk on MIL-101/AuNPs/CTS-PVP-rGO/GCE Electrochemical Sensor

Ruichi Zhao ., Sun S., Hao W., Guo H., Gao Y., Shi L.

Аннотация

A highly sensitive melamine electrochemical sensor was successfully constructed by self-assembling based on the composite of chitosan with polyvinyl pyrrolidone-dispersed reduced graphene oxide (CTS-PVP-rGO), gold nanoparticles (AuNPs) and metal-organic framework MIL-101. The characterizations of modified materials and electrodes were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray (EDX) spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The results indicated that the sensor of MIL-101/AuNPs/CTS-PVP-rGO/GCE exhibited a high sensitivity and selectivity as well as a good stability and reproducibility for the determination of melamine since CTS-PVP-rGO or AuNPs could enhance the conductivity of the sensor greatly and MIL-101 could promote the adsorption of melamine on the surface of the modified electrode remarkably. At pH 7.0, the scan rate of 100 mV/s and the frequency of 50 Hz, the determination limit of melamine was as low as 5.00 × 10–11 mol/L with the linear range from 5.00 × 10–11 to 1.00 × 10–8 mol/L and the correlation coefficient (R) of 0.996. Based on the electrochemical behavior of melamine on MIL-101/AuNPs/CTS-PVP-rGO/GCE, the possible redox procedure of melamine was put forward. Furthermore, the sensor of MIL-101/AuNPs/CTS-PVP-rGO/GCE was applied to the determination of melamine in milk products and a satisfying result was obtained.

Russian Journal of Electrochemistry. 2019;55(7):651-662
pages 651-662 views

Effect of Plasma-Assisted Electrochemical Treatment of Glassy Carbon Electrode on the Reversible and Irreversible Electrode Reactions

Krivenko A., Manzhos R., Kochergin V.

Аннотация

A glassy carbon electrode is modified by generating cathodic and anodic electrolytic plasma near its surface. Voltage pulses of amplitude up to 250 V, pulse-on time of 10 ms, and rise time <0.5 µs in the Na2SO4 aqueous solution are used to form plasma. It is found that, as a result of treatment by the anodic plasma, the glassy carbon surface acquires electrocatalytic properties toward the oxygen reduction reaction, whereas the cathodic plasma has no noticeable effect as compared to the pristine glassy carbon. At the same time, a pronounced effect of plasma-assisted electrochemical treatment of surface on the electron transfer rate constants is found only for the [Fe(CN)6]4–/3– redox reaction. By contrast, for the outer-sphere ([Ru(NH3)6]2+/3+) and inner-sphere (Fe2+/3+) reactions, the effect is not observed. It is supposed that the observed electrocatalytic effect toward the oxygen reduction reaction is caused by the formation of carbonyl fragments of functional groups, which are active centers of oxygen reduction, on the surface of glassy carbon electrode under the action of anodic plasma. However, they have no pronounced effect on the [Ru(NH3)6]2+/3+ and Fe2+/3+ redox systems.

Russian Journal of Electrochemistry. 2019;55(7):663-671
pages 663-671 views

Electrochemical Characteristics of Fuel Cells with CaZr0.9Y0.1O3 – δ Electrolyte Film Supported by Nickel–Cermet Anode

Kuimov V., Khaliullina A., Pankratov A., Antonov B., Dunyushkina L.

Аннотация

Electrochemical characteristics of fuel cells containing CaZr0.9Y0.1O3 – δ film supported by Ni–CaZr0.95Sc0.05O3 – δ anode are studied. It is shown that the diffusion of nickel from the electrode-support favors the increase in electronic conductivity of the electrolyte. It is found that to provide sufficiently high transport numbers of ions, the thickness of the CZY electrolyte film should not be smaller than 4 µm. The polarization losses on the anode are concluded to be the main reason for the lower power of fuel cells with thin-film electrolyte.

Russian Journal of Electrochemistry. 2019;55(7):672-679
pages 672-679 views

Silver(I) Oxide on Silver–Zinc Alloys: Anodic Formation and Properties

Murtazin M., Nesterova M., Grushevskaya S., Vvedenskii A.

Аннотация

Anodic formation in deoxygenated 0.1 М KOH solution of Ag(I) oxide on Ag–Zn alloys with zinc atomic fraction from 5 to 30 at % and its properties were examined using cyclic voltammetry supplemented by photoelectrochemical measurements. Phase composition of the alloys is confirmed by X-ray diffraction analysis. Surface morphology is studied using scanning electron microscope. Ag(I) oxide anodically formed on silver–zinc alloys is shown possessing n-type conductance, with dominating donor defects. The donor defect concentration in the Ag(I) oxide increases, as the zinc content in the alloy grows, and this leads to a decrease in the maximum photocurrent and to narrowing of the space charge region. With the increasing of the zinc concentration in the alloy, the Ag2O particles’ size decreases and their surface density increases.

Russian Journal of Electrochemistry. 2019;55(7):680-689
pages 680-689 views

Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support

Novomlinskiy I., Guterman V., Danilenko M., Volochaev V.

Аннотация

New nanostructured Pt/(SnO2/C)-electrocatalyst (20 wt % Pt) is synthesized via platinum chemical deposited onto composite SnO2/C-support microparticles (4 wt % Sn). The composite support was prepared beforehand using unique method of the tin electrochemical deposition onto disperse carbon black particles. It was shown by X-ray diffraction and transmission electron microscopy that the platinum and tin oxide nanoparticles distributed over the carbon surface are sized 2.4 and 2.9 nm, respectively. Electrochemical measurements showed the obtained catalyst to approach the commercial Pt/C HiSPEC 3000 catalyst (20 wt % Pt) with respect to its mass-activity in the oxygen electroreduction reaction and to be superior thereto as for the electrochemically active surface area, stability in stress test, and activity in methanol electrooxidation reaction. The peculiarities in electrochemical behavior of the synthesized Pt/(SnO2/C)-electrocatalyst can be explained by the SnO2 nanoparticle effect on the platinum nanoparticle nucleation/growth, as well as presence of Pt–SnO2–C triple junction nanostructure at the surface. The Pt/SnO2 contact provides stable platinum-to-support adhesion and asserts bifunctional catalysis mechanism of the methanol electrooxidation. And the Pt/C junctions provide for electron supplying/retraction to or from the platinum nanoparticles.

Russian Journal of Electrochemistry. 2019;55(7):690-700
pages 690-700 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».