Structure and properties of H-beams after accelerated water cooling


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The structure and properties of the surface of DP155 H-beams made of 09G2S low-carbon steel are determined on the basis of materials physics, before and after thermomechanical strengthening—that is, accelerated water cooling. Such H-beams are used in monorail tracks. Highly defective structure in the surface layer is created by accelerated cooling of the beam in the line of the 450 bar mill at AO EVRAZ Zapadno-Sibirskii Metallurgicheskii Kombinat, in the following conditions: rolling speed 6 m/s; water pressure in the crosspiece-cooling section 0.22–0.28 MPa; temperature before cooling about 800°C. As a result, the hardness, wear resistance, and scalar dislocation density are higher than in the steel without strengthening. Without thermal strengthening, the microhardness of the samples is 2.70 ± 0.33 GPa, while the Young’s modulus is 269.2 ± 27.1 GPa. Thermomechanical strengthening increases its microhardness to 3.30 ± 0.29 GPa, and decreases the Young’s modulus to 228.2 ± 25.7 GPa. In addition, the microhardness range is increased from 2.20–3.80 GPa to 2.64–4.60 GPa, while the Young’s modulus range is reduced from 208.0–403.0 GPa to 184.1–278.2 GPa on thermomechanical strengthening. It is found that thermomechanical strengthening increases the wear resistance of the steel’s surface layer by a factor of ~1.36 (decrease in wear rate from 5.3 × 10–5 to 2.9 × 10–5 mm3/N m) and increases the frictional coefficient by a factor of 1.36 (from 0.36 to 0.49). Without thermal strengthening, the structure observed is dislocational chaos; the scalar density of the dislocations is (0.9–1.0) × 1010 cm–2. High-temperature rolling and subsequent accelerated cooling of the samples produces dislocational substructure of band type in the ferrite grains and of reticular type in the martensite grains: the mean scalar density of the dislocations in the surface layer is 4.5 × 1010 cm–2. Possible explanations for such behavior are discussed.

作者简介

Yu. Ivanov

Institute of High-Current Electronics, Siberian Branch; Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: yufi55@mail.ru
俄罗斯联邦, Tomsk; Tomsk

E. Belov

AO EVRAZ Zapadno-Sibirskii Metallurgicheskii Kombinat (AO EVRAZ ZSMK)

Email: yufi55@mail.ru
俄罗斯联邦, Novokuznetsk

V. Gromov

Siberian State Industrial University

Email: yufi55@mail.ru
俄罗斯联邦, Novokuznetsk

S. Konovalov

Samara National Research University

Email: yufi55@mail.ru
俄罗斯联邦, Samara

D. Kosinov

Siberian State Industrial University

Email: yufi55@mail.ru
俄罗斯联邦, Novokuznetsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017