Динамика метаболического состояния костной ткани при комплексном лечении хронического посттравматического остеомиелита длинных костей

Обложка

Цитировать

Полный текст

Аннотация

Введение. Хронический посттравматический остеомиелит — многогранная проблема современной травматологии и ортопедии, затрагивающая, помимо медицинских, социальные и экономические аспекты. При планировании лечения необходимо принимать во внимание метаболическое состояние костной ткани, так как воздействие инфекционного патогена выходит далеко за рамки «классического» литического процесса, различными путями нарушая баланс костеобразования и резорбции костной ткани. Исследование посвящено изучению динамики параметров, отражающих метаболизм костной ткани у пациентов, получавших комплексную терапию по поводу хронического посттравматического остеомиелита длинных костей конечностей.

Цель исследования. Изучить динамику метаболических нарушений костной ткани у пациентов с ортопедической инфекцией длинных костей и крупных суставов в условиях продолжающейся комплексной этиотропной и компенсаторной терапии на протяжении 6 мес., сроков консолидации костной ткани — на протяжении 2 лет с момента оперативного вмешательства.

Материалы и методы. Исследование — проспективное, наблюдательное, сравнительное, поисковое, с включением 138 пациентов с посттравматическим хроническим остеомиелитом длинных костей. Комплексная терапия включала сочетание хирургического лечения с проведением антибактериальной, противовоспалительной терапии и медикаментозной коррекцией выявленных нарушений метаболизма костной ткани. Изучены сроки консолидации костных дефектов после лечения и динамика показателей метаболизма костной ткани.

Результаты и обсуждение. Показано сходство сроков консолидации различных сегментов в условиях описанной терапии; определен временной период, соответствующий наиболее выраженной динамике изменения (коррекции) нарушений (3 мес. с начала лечения); показана эффективность метаболической терапии для случаев лечения костно-суставной инфекции, локализованной в различных анатомических сегментах конечностей. Результаты согласуются как с итогами предыдущего исследования, так и с описанными в литературе патофизиологическими аспектами метаболизма костной ткани.

Выводы. Сроки консолидации в условиях терапии метаболических нарушений в целом сходны; наибольшие изменения показателей метаболизма костной ткани регистрируются в течение 3 мес. после начала терапии. Схема метаболической терапии может рассматриваться как универсальная для всех сегментов.

Об авторах

Арчил Важаевич Цискарашвили

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский Центр травматологии и ортопедии имени Н.Н. Приорова» Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: archil.tsiskarashvili@gmail.com

канд. мед. наук, врач – травматолог-ортопед высшей квалификационной категории, заведующий отделением последствий травм опорно-двигательной системы и гнойных осложнений

Россия, Москва

Светлана Семеновна Родионова

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский Центр травматологии и ортопедии имени Н.Н. Приорова» Министерства здравоохранения Российской Федерации

Email: centrosteoporoza@gmail.com

д-р мед. наук, профессор, руководитель Центра остеопороза

Россия, Москва

Сергей Павлович Миронов

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский Центр травматологии и ортопедии имени Н.Н. Приорова» Министерства здравоохранения Российской Федерации

Email: armed05@mail.ru

д-р мед. наук, профессор, академик РАН, почетный президент

Россия, Москва

Дмитрий Сергеевич Горбатюк

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский Центр травматологии и ортопедии имени Н.Н. Приорова» Министерства здравоохранения Российской Федерации

Email: gorbatyukds@cito-priorov.ru

научный сотрудник отделения последствий травм опорно-двигательной системы и гнойных осложнений

Россия, Москва

Александр Юрьевич Тараскин

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский Центр травматологии и ортопедии имени Н.Н. Приорова» Министерства здравоохранения Российской Федерации

Email: aletr2009@yandex.ru

аспирант отделения последствий травм опорно-двигательной системы и гнойных осложнений

Россия, Москва

Список литературы

  1. Thwaites G, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat Rev Microbio. 2011;9(3):215–222. doi: 10.1038/nrmicro2508.
  2. Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol. 2015;5:85. doi: 10.3389/fcimb.2015.00085.
  3. Claro T, Widaa A, O’Seaghda M. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One. 2011;6(4):e18748. doi: 10.1371/journal.pone.0018748.
  4. Цискарашвили А.В., Родионова С.С., Миронов С.П., и др. Метаболические нарушения костной ткани у пациентов с переломами длинных костей, осложненных хроническим остеомиелитом. Гений ортопедии. 2019;25(2):149–155. [Tsiskarashvili AV, Rodionova SS, Mironov SP, et al. Metabolic bone tissue disorders in patients with long bone fractures complicated by chronic osteomyelitis. Genii ortopedii. 2019;25(2):149–155. (In Russ.)] doi: 10.18019/1028-4427-2019-25-2-149-155.
  5. Травматология: национальное руководство / Под ред. Г.П. Котельникова, С.П. Миронова. М.: ГЭОТАР-МЕД, 2008. [Travmatologiya: natsional’noe rukovodstvo. Ed by G.P. Kotel’nikov, S.P. Mironov. Moscow: GEOTAR-MED; 2008. (In Russ.)]
  6. Леонова С.Н., Рехов А.В., Камека А.Л. Традиционное хирургическое лечение пациентов с переломами костей голени, осложненными хроническим травматическим остеомиелитом. Бюллетень ВСНЦ СО РАМН. 2013;(2– 1):45–48. [Leonova SN, Rekhov AV, Kameka AL. Traditional surgical treatment of patients with leg fractures complicated by chronic traumatic osteomyelitis. Byulleten’ VSNTs SO RAMN. 2013;(2–1):45–48. (In Russ.)]
  7. Леонова С.Н., Рехов А.В., Камека А.Л. Лечение переломов, осложненных гнойной инфекцией. Сибирский медицинский журнал. 2013;120(5):141–143. [Leonova SN, Rekhov AV, Kameka AL. Treatment of fractures complicated by purulent infection. Sibirskii meditsinskii zhurnal. 2013;120(5):141–143. (In Russ.)]
  8. Леончук Д.С., Сазонова Н.В., Ширяева Е.В., Клюшин Н.М. Хронический посттравматический остеомиелит плеча: экономические аспекты лечения методом чрескостного остеосинтеза аппаратом Илизарова. Гений ортопедии. 2017;23(1):74–79. [Leonchuk DS, Sazonova NV, Shiryaeva EV, Klyushin NM. Chronic post-traumatic osteomyelitis of the shoulder: economic aspects of treatment by the method of transosseous osteosynthesis with the Ilizarov apparatus. Genii ortopedii. 2017;23(1):74–79. (In Russ.)]
  9. Brause B. Infections with prostheses in bones and joints. In: Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases. 7th ed. Philadelphia: Churchill Livingstone; 2010.
  10. Khatod M, Botte MJ, Hoyt DB, et al. Outcomes in open tibia fractures: relationship between delay in treatment and infection. J Trauma. 2003;55(5):949–954. doi: 10.1097/01.TA.0000092685.80435.63.
  11. Микулич Е.В. Современные принципы лечения хронического остеомиелита. Вестник новых медицинских технологий. 2012;19(2):180. [Mikulich EV. Modern principles of treatment of chronic osteomyelitis. Vestnik novykh meditsinskikh tekhnologii. 2012;19(2):180. (In Russ.)]
  12. Takayanagi H, Ogasawara K, Hida S, et al. Tcell-mediated regulation of osteoclastogenesis by signaling cross-talk between RANKL and IFN-gamma. Nature. 2002;408(6812):600–605. doi: 10.1038/35046102.
  13. Theill LE, Boyle WJ, Penninger JM. KANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.
  14. Stashenko P, Dewhirst FE, Peros WJ, et al. Synergistic interactions between interleukin-1, tumor necrosis factor and lymphotoxin in bone resorption. J Immunol. 1987;138(5):1464–1468.
  15. Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987;138(3):775–779.
  16. Ishimi Y, Miyaura C, Jin CH, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297–3303.
  17. Kavanagh N, Ryan EJ, Widaa A, et al. Staphylococcal osteomyelitis: disease progression, treatment challenges and future directions. Clin Microbiol Rev. 2018;31(2):e00084-17. doi: 10.1128/CMR.00084-17.
  18. Wang Y, Liu X, Dou C, et al. Staphylococcal protein A promotes osteoclastogenesis through MAPK signaling during bone infection. J Cell Physiol. 2017;232(9):2396–2406. doi: 10.1002/jcp.25774.
  19. Ren LR, Wang ZH, Wang H, et al. Staphylococcus aureus induces osteoclastogenesis via the NF-κB signaling pathway. Med Sci Monit. 2017;23(4):4579–4590. doi: 10.12659/MSM.903371.
  20. Grbic R, Miric DJ, Kisic B, et al. Sequentional analysis of oxidative stress markers and vitamin C status in acute bacterial osteomyelitis. Mediators Inflamm. 2014;2014:975061. doi: 10.1155/2014/975061.
  21. Borsiczky B, Szabó Z, Jaberansari MT, et al. Activated PMNs lead to oxidative stress on chondrocytes: a study of swine knees. Acta Orthop Scand. 2003;74(2):190–195. doi: 10.1080/00016470310013941.
  22. Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468–477. doi: 10.1016/j.molmed.2009.08.004.
  23. Рогова Л.Н., Шестерина Н.В., Замечник Т.В., Фастова И.А. Матриксные металлопротеиназы, их роль в физиологических и патологических процессах (Обзор). Вестник новых медицинских технологий. 2011;18(2):86–89. [Rogova LN, Shesterina NV, Zamechnik TV, Fastova IA. Matrix metalloproteinases, their role in physiological and pathological processes (Review). Vestnik novykh meditsinskikh tekhnologii. 2011;18(2):86–89. (In Russ.)]
  24. Протасов М.В., Смагина Л.В., Галибин О.В. Зависимость активности ММП в раневом экссудате крыс от состояния тканей раны на начальных этапах раневого процесса. Цитология. 2008;50(10):882–886. [Protasov MV, Smagina LV, Galibin OV. Dependence of MMP activity in rat wound exudate on the state of wound tissues at the initial stages of the wound process. Tsitologiya. 2008;50(10):882–886. (In Russ.)]
  25. Lukens JR, Gross JM, Calabrese C, et al. Critical role for inflammasome-independent IL-1ß production in osteomyelitis. Proc Natl Acad Sci U S A. 2014;111(3):1066–1071. doi: 10.1073/pnas.1318688111.
  26. Миронов С.П., Цискарашвили А.В., Горбатюк Д.С. Хронический посттравматический остеомиелит как проблема современной травматологии и ортопедии (обзор литературы). Гений ортопедии. 2019;25(4):610–621. [Mironov SP, Tsiskarashvili AV, Gorbatyuk DS. hronic post-traumatic osteomyelitis as a problem of contemporary traumatology and orthopedics (literature review). Genii ortopedii. 2019;25(4):610–621. (In Russ.)] doi: 10.18019/1028-4427-2019-25-4-610-621.
  27. Wagner JM, Jaurich H, Wallner C, et al. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res. 2017;35(11):2425–2434. doi: 10.1002/jor.23555.
  28. Цискарашвили А.В. Лечение больных с переломами длинных костей, осложненных гнойной инфекцией, с учетом биомеханической концепции фиксации отломков: Автореф. дис. ... канд. мед. наук. M., 2009. [Tsiskarashvili AV. Lechenie bol’nykh s perelomami dlinnykh kostei, oslozhnennykh gnoinoi infektsiei, s uchetom biomekhanicheskoi kontseptsii fiksatsii otlomkov. [dissertation abstract] Moscow; 2009. (In Russ.)]
  29. Пичхадзе И.М. Атлас переломов конечностей и таза. M., 2002. [Pichkhadze IM. Atlas perelomov konechnostei i taza. Moscow; 2002. (In Russ.)]
  30. Патент РФ на изобретение № 2176519/ 10.12.01. Бюл. № 34. Родионова С.С., Попова Т.П., Балберкин А.В., Колондаев А.Ф., Клюшниченко И.В. Способ профилактики потери костной ткани вокруг имплантатов при эндопротезировании. [Patent RUS №2176519/10.12.01. Byul. № 34. Rodionova SS, Popova TP, Balberkin AV, Kolondaev AF, Kljushnichenko IV. Method for preventing from bone tissue losses around implants when using endoprosthesis. (In Russ.)] Режим доступа: https://www.elibrary.ru/item.asp?id=37871093. Дата обращения: 12.12.2020.
  31. Gadomski BC, McGilvray KC, Easley JT, et al. Partial gravity unloading inhibits bone healing responses in a large animal model. J Biomech. 2014;47(12):2836–2842. doi: 10.1016/j.jbiomech.2014.07.031.
  32. Gadomski BC, Lerner ZF, Browning RC, et al. Computational characterization of fracture healing under reduced gravity loading conditions. J Orthop Res. 2016;34(7):1206–1215. doi: 10.1002/jor.23143 .
  33. Swaffield TP, Neviaser AS, Lehnhardt K. Fracture risk in spaceflight and potential treatment options. Aerosp Med Hum Perform. 2018;89(12):1060–1067. doi: 10.3357/AMHP.5007.2018.
  34. Vico L, Collet P, Guignandon A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–1611. doi: 10.1016/s0140-6736(00)02217-0.
  35. Bellido T, Saini V, Pajevic PD. Effects of PTH on osteocyte function. Bone. 2013;54(2):250–257. doi: 10.1016/j.bone.2012.09.016.
  36. Elmaataoui A, Elmachtani Idrissi S, Dami A, et al. [Association between sex hormones, bone remodeling markers and bone mineral density in postmenopausal women of Moroccan origin (cross-sectional study)] Pathol Biol (Paris). 2016;62(1):49–54. (In French.) doi: 10.1016/j.patbio.2013.11.001.
  37. Nakamura K, Saito T, Oyama M, et al. Vitamin D sufficiency is associated with low incidence of limb and vertebral fractures in community-dwelling elderly Japanese women: the Muramatsu study. Osteoporos Int. 2011;22(1):97–103. doi: 10.1007/s00198-010-1213-6.
  38. Ardawi MS, Qari MH, Rouzi AA, et al. Vitamin D status in relation to obesity, bone mineral density, bone turnover markers and vitamin D receptor genotypes in healthy Saudi pre- und postmenopausal women. Osteoporos Int. 2011;22(2):463–475. doi: 10.1007/s00198-010-1249-7.
  39. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s Guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–2381. doi: 10.1007/s00198-014-2794-2.
  40. Tsiskarashvili A, Zagorodny N, Rodionova S, Gorbatyuk D. Metabolic disorders in patients with chronic osteomyelitis: etiology and pathogenesis. In: Clinical Implementation of Bone Regeneration and Maintenance. IntechOpen; 2020. doi: 10.5772/intechopen.92052.
  41. Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения. Ожирение и метаболизм. 2012;9(2):33–42. [Pleshcheva AV, Pigarova EA, Dzeranova LK. Vitamin D and metabolism: facts, myths and preconceptions. Ozhirenie i metabolizm. 2012;9(2):33–42. (In Russ).]
  42. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е., и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016;62(4):60–84. [Pigarova EA, Rozhinskaya LY, Belaya JE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016;62(4):60–84. (In Russ.)] doi: 10.14341/probl201662460-84.
  43. Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–642. doi: 10.1038/s41577-019-0178-8.
  44. Tomizawa T, Ishikawa M, Bello-Irizarry SN, et al. Biofilm producing staphylococcus epidermidis (RP62A Strain) inhibits osseous integration without osteolysis and histopathology in a murine septic implant model. J Orthop Res. 2020;38(4):852–860. doi: 10.1002/jor.24512.
  45. Lorenzo J. The many ways of osteoclast activation. J Clin Invest. 2017;127(7):2530–2532. doi: 10.1172/JCI94606.
  46. Kitazawa R, Haraguchi R, Fukushima M, Kitazawa S. Pathologic conditions of hard tissue : role of osteoclasts in osteolytic lesion. Histochem Cell Biol. 2018;149(4):405–415. doi: 10.1007/s00418-018-1639-z.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2020



Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).