Bacteriostatic Characteristics of Bone Substituting Constructors Obtained from Composite Materials Based on Natural Polymers, Calcium Phosphates and Vancomycin


如何引用文章

全文:

详细

Introduction. The local delivery of therapeutic antibiotic concentrations to the zone of surgical intervention in bone pathology enables either to prevent or significantly decrease the rate of osteomyelitis development. It that study the efficacy of vancomycin inclusion and release from three dimensional constructors based on sodium alginate, gelatin and octacalcium phosphate and vancomycin intended for bone defect substitution was studied. Materials and methods . Prototyping of 3D constructors was performed by extrusion 3D printing. Various concentrations of vancomycin were added as an additional component at the stage of preparation of hydrogel (“ink”) for printing. Physical testing of the constructors included electron microscopic evaluation of their microstructure and porosity as well as the study of mechanical strength for compression and stretching. Functional activity of printed constructors with respect to the test strain S. aureus ATCC 6538-P was assessed by a disc-diffusion method in vitro and on the model of infected excision skin wound in rats - in vivo. Results . Analysis of the kinetic curves showed that the principal release of the drug in the model liquid took place within the first day. The total volume of the bound and released vancomycin made up approximately 20% of the calculated initial amount for all three concentrations. Formation of the marked growth inhibition zone of S. aureus strain in presence of vancomycin rich constructors was demonstrated in vitro. Insertion of constructors into the zone of infected skin defect resulted in a decrease of inflammatory processes severity and rate as well as accelerated the terms of complete wound healing. Conclusion. Study results showed the principle potentiality of bone substituting implants 3D-printing using multicomponent hydrogel compositions without change of separate components characteristics.

作者简介

P. Karalkin

P.A. Herzen Moscow Oncology Research Institute

Email: prognoz.06@mail.ru
cand. med. sci., senior research worker, department of conservative treatment efficacy prognosis, MNIOI named after P.A. Gertsen - branch of NMIRTs Moscow, Russia

N. Sergeeva

Pirogov Russian National Research Medical University

доктор биол. наук, профессор РНИМУ им. Н.И. Пирогова, зав. отделением прогноза эффективности консервативного лечения МНИОИ им. П.А. Герцена Moscow, Russia

V. Komlev

A. Baikov Institute of Metallurgy and Materials Science

доктор техн. наук, член-корр. РАН, зам. директора по науке ИМЕТ РАН Moscow, Russia

I. Sviridova

P.A. Herzen Moscow Oncology Research Institute

канд. биол. наук, ведущий науч. сотр. отделения прогноза эффективности консервативного лечения МНИОИ им. П.А. Герцена Moscow, Russia

V. Kirsanova

P.A. Herzen Moscow Oncology Research Institute

кандидат биол. наук, науч. сотр. отделения прогноза эффективности консервативного лечения МНИОИ им. П.А. Герцена Moscow, Russia

S. Akhmedova

P.A. Herzen Moscow Oncology Research Institute

кандидат биол. наук, науч. сотр. отделения прогноза эффективности консервативного лечения МНИОИ им. П.А. Герцена Moscow, Russia

Ya. Shanskiy

P.A. Herzen Moscow Oncology Research Institute

младший науч. сотр. отделения прогноза эффективности консервативного лечения МНИОИ им. П.А. Герцена Moscow, Russia

E. Kuvshinova

P.A. Herzen Moscow Oncology Research Institute

младший науч. сотр. отделения прогноза эффективности консервативного лечения МНИОИ им. П.А. Герцена Moscow, Russia

A. Fedotov

A. Baikov Institute of Metallurgy and Materials Science

канд. техн. наук, старший науч. сотр. лаборатории керамических композиционных материалов ИМЕТ РАН Moscow, Russia

A. Teterina

A. Baikov Institute of Metallurgy and Materials Science

младший науч. сотр. лаборатории керамических композиционных материалов ИМЕТ РАН Moscow, Russia

S. Barinov

A. Baikov Institute of Metallurgy and Materials Science

доктор техн. наук, член-корр. РАН, зав. лаборатории керамических композиционных материалов ИМЕТ РАН Moscow, Russia

A. Kaprin

P.A. Herzen Moscow Oncology Research Institute

доктор мед. наук, профессор, акад. РАН, генеральный директор НМИРЦ Moscow, Russia

参考

  1. Lew D.P., Waldvogel F.A. Osteomyelitis. Lancet. 2004; 364 (9431): 369-79. doi: 10.1016/S0140-6736(04)16727-5.
  2. Jorge L.S., Chueire A.G., Rossit A.R. Osteomyelitis: a current challenge. Braz. J. Infect. Dis. 2010; 14 (3): 310-5.
  3. Treaba D., Assad L., Govil H. et al. Diagnostic role of fine- needle aspiration of bone lesions in patients with a previous history of malignancy. Diagn. Cytopathol. 2002; 26 (6): 380-3. doi: 10.1002/dc.10120.
  4. Seng P., Alliez A., Honnorat E. et al. Osteomyelitis of sternum and rib after breast prosthesis implantation. IDCases. 2014; 2 (1): 31-3. doi: 10.1016/j.idcr.2014.12.004.
  5. Olson M.E., Horswill A.R. Staphylococcus aureus osteomyelitis: bad to the bone. Cell Host Microbe. 2013; 13 (6): 629-31. doi: 10.1016/j.chom.2013.05.015.
  6. Trampuz A., Widmer A.F. Infections associated with orthopedic implants. Curr. Opin. Infect. Dis. 2006; 19 (4): 349-56. doi: 10.1097/01.qco.0000235161.85925.e8.
  7. Marculescu C.E., Berbari E.F., Cockerill F.R., Osmon D.R. Fungi, mycobacteria, zoonotic and other organisms in prosthetic joint infection. Clin. Orthop. Relat. Res. 2006; 451: 64-72. doi: 10.1097/01.blo.0000229337.21653.f2.
  8. Gogia J.S., Meehan J.P., Di Cesare P.E., Jamali A.A. Local antibiotic therapy in osteomyelitis. Semin. Plast. Surg. 2009; 23 (2): 100-7. doi: 10.1055/s-0029-1214162.
  9. Панкратов А.С., Лекишвили М.В., Копецкий И.С. Костная пластика в стоматологии и челюстно-лицевой хирургии. Остеопластические материалы. М.: БИНОМ; 2011: 120-38.
  10. Pertici G., Carinci F., Carusi G. et al. Composite polymer- coated mineral scaffolds for bone regeneration: from material characterization to human studies. J. Biol. Regul. Homeost. Agents. 2015; 29 (3 Suppl. 1): 136-48.
  11. Сергеева Н.С., Комлев В.С., Свиридова И.К. и др. Некоторые физико-химические и биологические характеристики трехмерных конструкций на основе альгината натрия и фосфатов кальция, полученных методом 3D-печати и предназначенных для реконструкции костных дефектов. Гены и клетки. 2015; 10 (2): 39-45.
  12. Komlev V.S., Barinov S.M., Bozo I.I., Deev R.V., Eremin I.I., Sergeeva N.S. et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior. ACS Appl. Mater. Interfaces. 2014; 6 (19): 16610-20.
  13. Каралкин П.А., Сергеева Н.С., Комлев В.С. и др. Биосовместимость и остеопластические свойства минерал-полимерных композиционных материалов на основе альгината натрия, желатина и фосфатов кальция, предназначенных для трехмерной печати костно-замещающих конструкций. Гены и клетки. 2016; 11 (3): 94-101.
  14. Inzana J.A., Trombetta R.P., Schwarz E.M. et al. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur. Cell. Mater. 2015; 4 (30): 232-47.
  15. Bose S., Vahabzadeh S., Bandyopadhyay A. Bone Tissue Engineering Using 3D Printing. Materials Today. 2013; 16: 496-504. doi: 10.1016/j.mattod.2013.11.017.
  16. Kim H.W., Knowles J.C., Kim H.E. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J. Biomed. Mater. Res. B Appl. Biomater. 2005; 74 (2): 686-98. doi: 10.1002/jbm.b.30236.
  17. Costa P.F. Bone Tissue Engineering Drug Delivery. Curr. Mol. Bio Rep. 2015; 1: 87-93. doi: 10.1007/s40610-015- 0016-0.
  18. Melicherc_k P., Jahoda D., Nyc O. et al. Bone grafts as vancomycin carriers in local therapy of resistant infections. Folia Microbiol. (Praha). 2012; 57(5): 459-62.
  19. Hernandez F.J., Hernandez L.I., Kavruk M. et al. NanoKeepers: stimuli responsive nanocapsules for programmed specific targeting and drug delivery. Chem. Commun. (Camb). 2014; 50 (67): 9489-92. doi: 10.1039/ c4cc04248d.
  20. Methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST Definitive document. Clin. Microbiol. Infect. 1998; 4: 291-96.
  21. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed. Eng. Online. 2016; 15 (1): 115. doi: 10.1186/s12938-016-0236-4.
  22. Suzuki O., Imaizumi H., Kamakura S., Katagiri T. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr. Med. Chem. 2008; 15 (3): 305-13.
  23. Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014; 14 (1): 15-56.
  24. Tozzi G., De Mori A., Oliveira A., Roldo M. Composite Hydrogels for Bone Regeneration. Materials. 2016; 9 (4): 267-91. doi: 10.3390/ma9040267.
  25. Inzana J.A., Olvera D., Fuller S.M. et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014; 35 (13): 4026-34. doi: 10.1016/j.biomaterials.2014.01.064.
  26. Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016; 81: 58-71. doi: 10.1016/j. biomaterials.2015.12.012.
  27. Reizner W., Hunter J.G., O’Malley N.T. et al. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur. Cell. Mater. 2014; 27: 196-212.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2017



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».