Features of the formation of bone regenerate and metabolism of bone formation markers in a patient with type 1 diabetes mellitus and diabetic neuroosteoarthropathy (Charcot foot)
- Authors: Bardiugov P.S.1,2,3, Artemova E.V.1, Parshikov M.V.2, Yarygin N.V.2
-
Affiliations:
- Endocrinology Research Centre
- Russian University of Medicine
- Ilyinskaya Hospital
- Issue: Vol 31, No 3 (2024)
- Pages: 381-394
- Section: Clinical case reports
- URL: https://bakhtiniada.ru/0869-8678/article/view/290883
- DOI: https://doi.org/10.17816/vto623895
- ID: 290883
Cite item
Abstract
Background: Surgical treatment of diabetic neuroosteoarthropathy is a complex area in traumatology — orthopedics not only because of severe biomechanical disorders and gross deformations of the distal segment of the lower limb, but also because these phenomena are accompanied by many disorders of the somatic status. Of particular importance is a pronounced decrease in bone mineral density. This case is intended to illustrate the features of the treatment of this pathology.
Clinical case description: A clinical case of treatment of a 34-year-old young female patient with type 1 diabetes mellitus, development of diabetic neuroosteoarthropathy (Charcot foot), and aseptic necrosis of the talus of the right foot is presented. From 2019–2020 conservative and surgical treatment was carried out aimed at stopping the active stage of Charcot foot, correcting deformity and stabilizing the distal segment of the limb (calcaneotibial arthrodesis). A satisfactory treatment result was achieved, complete activation 8 months after the operation. However, in 2021 The patient suffered a closed low-energy fracture of the distal metaphysis of the right tibia. Regarding this episode, the patient comes in at the stage of consolidation of a displaced fracture and complaints of recurrence of varus deformity, even greater shortening of the limb, and swelling of the ankle joint. The fact of injury is denied, which allows us to regard the existing fracture of the tibia as pathological. In this regard, an operation was performed: osteotomy of the fibula and tibia in the area of consolidation of the pathological fracture in order to correct the deformity and compensate for the existing shortening of the limb due to the formation of a distraction regenerate. During the treatment, malnutrition and delayed formation of bone regenerate were noted, which required prolonged use of an external fixation device and specific drug therapy aimed at stimulating osteogenesis and improving bone mineral density. At the end of the course, there was an increase in the mineral density of the tissue, the density of the regenerate radiologically and laboratory (control of bone formation markers) and a satisfactory functional result.
CONCLUSION: A successful result in this clinical case was achieved by combining orthopedic surgical and conservative treatment with specific drug therapy in a comorbid patient with reduced bone mineral density and a high probability of complications in a multidisciplinary approach.
Full Text
##article.viewOnOriginalSite##About the authors
Petr S. Bardiugov
Endocrinology Research Centre; Russian University of Medicine; Ilyinskaya Hospital
Author for correspondence.
Email: petrbardiugov@gmail.com
ORCID iD: 0000-0002-5771-0973
SPIN-code: 7590-0446
MD, Cand. Sci. (Medicine)
Russian Federation, 11 Dm. Ulyanova str., 117292 Moscow; Moscow; KrasnogorskEkaterina V. Artemova
Endocrinology Research Centre
Email: artemova.ekaterina@endocrincentr.ru
ORCID iD: 0000-0002-2232-4765
SPIN-code: 4649-0765
MD
Russian Federation, 11 Dm. Ulyanova str., 117292 MoscowMikhail V. Parshikov
Russian University of Medicine
Email: parshikovmikhail@gmail.com
ORCID iD: 0000-0003-4201-4577
SPIN-code: 5838-4366
MD, Dr. Sci. (Medicine), рrofessor
Russian Federation, MoscowNikolay V. Yarygin
Russian University of Medicine
Email: dom1971@yandex.ru
ORCID iD: 0000-0003-4322-6985
SPIN-code: 3258-4436
MD, Dr. Sci. (Medicine), рrofessor, corresponding member of the Russian Academy of Sciences
Russian Federation, MoscowReferences
- Wukich DK, Schaper NC, Gooday C, et al. Guidelines on the diagnosis and treatment of active Charcot neuro-osteoarthropathy in persons with diabetes mellitus (IWGDF 2023). Diabetes Metab Res Rev. 2024;40(3):e3646. doi: 10.1002/dmrr.3646
- Dedov II, Shestakova MV, Mayorov AYu, et al. Algorithms of specialized medical care for patients with diabetes mellitus. Diabetes mellitus. 2023;26(2S):1–231. (In Russ). doi: 10.14341/DM13042
- Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P- and CGRP-immunoreactive nerves in bone. Peptides. 1988;1(9):165–171. doi: 10.1016/0196-9781(88)90023-x
- Bellinger DL, Lorton D, Felten SY, Felten DL. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. International journal of immunopharmacology. 1992;3(14):329–344. doi: 10.1016/0192-0561(92)90162-e
- Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–317. doi: 10.1016/s0092-8674(02)01049-8
- Moore RE, Smith CK II, Bailey CS, Voelkel EF, Tashjian AH Jr. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23(3):301–315. doi: 10.1016/S0169-6009(08)80105-5
- Togari A, Arai M, Mizutani S, et al. Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett. 1997;233(2–3):125–128. doi: 10.1016/S0304-3940(97)00649-6
- Bajayo A, Bar A, Denes A, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proceedings of the National Academy of Sciences of the United States of America. 2012;38(109):15455–15460. doi: 10.1073/pnas.1206061109
- Pierroz DD, Bonnet N, Bianchi EN, et al. Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res. 2012;27(6):1252–1262. doi: 10.1002/jbmr.1594
- Kliemann K, Kneffel M, Bergen I, et al. Quantitative analyses of bone composition in acetylcholine receptor M3R and alpha7 knockout mice. Life Sci. 2012;91(21–22):997–1002. doi: 10.1016/j.lfs.2012.07.024
- Elefteriou F. Impact of the Autonomic Nervous System on the Skeleton. Physiol Rev. 2018;98(3):1083–1112. doi: 10.1152/physrev.00014.2017
- Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther. 2012;14(3):R101. doi: 10.1186/ar3826
- Ghilardi JR, Freeman KT, Jimenez-Andrade JM, et al. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis Rheum. 2012;64(7):2223–2232. doi: 10.1002/art.34385
- Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207. doi: 10.1016/j.neuroscience.2011.01.039
- Nencini S, Ringuet M, Kim D-H, Greenhill C, Ivanusic JJ. GDNF, neurturin, and artemin activate and sensitize bone afferent neurons and contribute to inflammatory bone pain. J Neurosci. 2018;38(21):4899–4911. doi: 10.1523/JNEUROSCI.0421-18.2018
- Ghilardi JR, Freeman KT, Jimenez-Andrade JM, et al. Sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone. 2011;48(2):389–398. doi: 10.1016/j.bone.2010.09.019
- McMahon SB, La Russa F, Bennett DLH. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat Rev Neurosci. 2015;16(7):389–402. doi: 10.1038/nrn3946
- Tao R, Mi B, Hu Y, et al. Hallmarks of peripheral nerve function in bone regeneration. Bone Res. 2023;11(1):6. doi: 10.1038/s41413-022-00240-x
- Mi J, Xu J, Yao H, et al. Calcitonin gene-related peptide enhances distraction osteogenesis by increasing angiogenesis. Tissue Eng. 2021;27(1–2):87–102. doi: 10.1089/ten.TEA.2020.0009
- Wang L, Shi X, Zhao R, et al. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone. 2010;46(5):1369–1379. doi: 10.1016/j.bone.2009.11.029
- Yuan Y, Jiang Y, Wang B, et al. Deficiency of calcitonin gene-related peptide affects macrophage polarization in osseointegration. Front Physiol. 2020;11:733. doi: 10.3389/fphys.2020.00733
- Pongratz G, Straub RH. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat Rev Rheumatol. 2013;9(2):117–126. doi: 10.1038/nrrheum.2012.181
- Vinik AI, Nevoret M-L, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013;42(4):747–787. doi: 10.1016/j.ecl.2013.06.001
- Van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(4):229–232. doi: 10.1038/nrrheum.2009.31
- Ha J, Hester T, Foley R, et al. Charcot foot reconstruction outcomes: A systematic review. J Clin Orthop Trauma. 2020;11(3):357–368. doi: 10.1016/j.jcot.2020.03.025
- Kwaadu KY. Charcot Reconstruction: Understanding and Treating the Deformed Charcot Neuropathic Arthropathic Foot. Clin Podiatr Med Surg. 2020;37(2):247–261. doi: 10.1016/j.cpm.2019.12.002
- Young RJ. The Organisation of Diabetic Foot Care: Evidence-Based Recommendations. The Foot in Diabetes. John Wiley & Sons, Ltd; 2006. Р. 398–403. doi: 10.1002/0470029374.ch36
- Siddiqui NA, Millonig KJ, Mayer BE, et al. Increased Arthrodesis Rates in Charcot Neuroarthropathy Utilizing Distal Tibial Distraction Osteogenesis Principles. Foot & Ankle Specialist. 2022;15(4):394–408. doi: 10.1177/19386400221087822
- Tellisi N, Fragomen AT, Ilizarov S, Rozbruch SR. Limb Salvage Reconstruction of the Ankle with Fusion and Simultaneous Tibial Lengthening Using the Ilizarov/Taylor Spatial Frame. HSS Journal. 2007;4(1):32–42. doi: 10.1007/s11420-007-9073-0
- Sakurakichi K, Tsuchiya H, Uehara K, et al. Ankle arthrodesis combined with tibial lengthening using the Ilizarov apparatus. Journal of Orthopaedic Science. 2003;8(1):20–25. doi: 10.1007/s007760300003
- Millonig KJ, Siddiqui NA. Tibial Lengthening and Intramedullary Nail Fixation for Hindfoot Charcot Neuroarthropathy. Clin Podiatr Med Surg. 2022;39(4):659–673. doi: 10.1016/j.cpm.2022.05.011
- Galli M, Pitocco D, Ruotolo V, et al. The effect of alendronate in acute charcot neuroarthropathy of the foot could be mediated by the decrease of IGF-1. Orthop Procs. 2009;91-B(suppl.):161–161. doi: 10.1302/0301-620X.91BSUPP_I.0910161c
- Shina Y, Engebretsen L, Iwasa J, et al. Use of bisphosphonates for the treatment of stress fractures in athletes. Knee Surg Sports Traumatol Arthrosc. 2011;17(5):542–550. doi: 10.1007/s00167-008-0673-0
- Rastogi A, Hajela A, Prakash M, et al. Teriparatide (recombinant human parathyroid hormone) increases foot bone remodeling in diabetic chronic Charcot neuroarthropathy: a randomized double-blind placebo-controlled study. J Diabetes. 2019;11(9):703–710. doi: 10.1111/1753-0407.12902
- Petrova NL, Donaldson NK, Bates M, et al. Effect of Recombinant Human Parathyroid Hormone (1-84) on Resolution of Active Charcot Neuro-osteoarthropathy in Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study. Diabetes Care. 2021;44(7):1613–1621. doi: 10.2337/dc21-0008
Supplementary files
