Decision-making in unicompartmental knee arthroplasty using radiological parameters in South Asian populations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: Many patients who visit orthopedic surgeons mainly complained of knee pain, which is often diagnosed as osteoarthritis affecting the medial compartment, whereas the lateral compartment and patello-femoral joint remain relatively unaffected.

AIM: This study aimed to establish criteria for patient selection and validate an evidence-based approach for selecting candidates for unicompartmental knee arthroplasty (UKA). Key considerations in patient selection for UKA include identifying the presence of bone-on-bone osteoarthritis in the medial compartment, ensuring a functionally normal anterior cruciate ligament, maintaining full-thickness cartilage in the lateral compartment, verifying a functionally normal medial collateral ligament, and confirming the absence of severe damage lateral to the patello-femoral joint.

MATERIALS AND METHODS: From a consecutive cohort of 390 patients with medial knee pain, preoperative radiographs of bilateral knee including anteroposterior/lateral/Rosenberg/20° valgus stress views were collected, and results were tabulated. Patients were categorized into appropriate groups. The suitability for UKA was determined based on the Oxford radiological decision aid, history, examination, and radiographic assessment including stress radiographs.

RESULTS: The Oxford radiological decision aid demonstrated 92% sensitivity and 88% specificity. According to the radiographic assessment, 49% of the knees were considered suitable for Oxford UKA (OUKA), whereas 51% were deemed unsuitable. Among the 51 knees identified as unsuitable for OUKA, 40% did not meet one radiographic criterion, 38% did not meet two criteria, 22% did not meet three criteria, and <1% did not meet four criteria.

CONCLUSION: The Oxford radiographic decision aid safely and reliably identifies the appropriate patients for meniscal-bearing UKA and achieves good results in this population. The widespread use of this radiological decision aid should improve the results of UKA.

About the authors

Aswin Vijay

Chettinad Hospital and Research Institute

Author for correspondence.
Email: aswin7009@gmail.com
ORCID iD: 0009-0008-2075-2046

postgraduate student, Department of Orthopaedics

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

Haemanath Pandian

Chettinad Hospital and Research Institute

Email: haemanath@gmail.com
ORCID iD: 0000-0002-6268-9478

associate professor

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

Pradeep Elangovan

Chettinad Hospital and Research Institute

Email: prad_87@yahoo.co.in
ORCID iD: 0000-0003-0312-2428

professor, Department of Orthopaedics

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

Arunkumar K. Vijayakumari

Chettinad Hospital and Research Institute

Email: arun5684@gmail.com
ORCID iD: 0000-0001-8590-0988

associate professor, Orthopaedics

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

Ganesh Anantharaman

Chettinad Hospital and Research Institute

Email: aganesh.anantharaman@gmail.com
ORCID iD: 0000-0002-0692-6213

associate professor, Orthopaedics

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

Sheik M. Tajudeen

Chettinad Hospital and Research Institute

Email: sheik.145@gmail.com
ORCID iD: 0009-0008-9491-0983

senior resident, Orthopaedics

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

Rajan Raghul

Chettinad Hospital and Research Institute

Email: rahul_2022@ymail.com
ORCID iD: 0009-0008-5430-6175

Orthopaedics

India, Chennai, Chettinad Health City, SH 49A, Kelambakkam, Tamil Nadu 603103

References

  1. Hsu H, Siwiec RM. Knee Osteoarthritis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507884/
  2. Lundgren Nilsson Å, Dencker A, Palstam A, et al. Patient-reported outcome measures in osteoarthritis: a systematic search and review of their use and psychometric properties. RMD Open. 2018;4(2):e000715. doi: 10.1136/rmdopen-2018-000715
  3. McCormack DJ, Puttock D, Godsiff SP. Medial compartment osteoarthritis of the knee: a review of surgical options. EFORT Open Rev. 2021;6(2):113–117. doi: 10.1302/2058-5241.6.200102
  4. Ode Q, Gaillard R, Batailler C, et al. Fewer complications after UKA than TKA in patients over 85 years of age: A case-control study. Orthop Traumatol Surg Res. 2018;104(7):955–959. doi: 10.1016/j.otsr.2018.02.015
  5. Shlomo YB, Blom A, Boulton C, et al. The National Joint Registry 16th Annual Report 2019 [Internet]. The National Joint Registry. 2019. Available from: https://www.semanticscholar.org/paper/The-National-Joint-Registry-16th-Annual-Report-2019-Ben-Shlomo-Blom/e73d48948fb87c3830e881c6f2061dd60b531179
  6. Clement ND, Afzal I, Liu P, et al. The Oxford Knee Score is a reliable predictor of patients in a health state worse than death and awaiting total knee arthroplasty. Arthroplasty. 2022;4(1):33. doi: 10.1186/s42836-022-00132-9
  7. Oosthuizen C, Burger S, Vermaak D, et al. The X-Ray Knee instability and Degenerative Score (X-KIDS) to determine the preference for a partial or a total knee arthroplasty (PKA/TKA). SA Orthopaedic Journal. 2015;14(3):61–69. doi: 10.17159/2309-8309/2015/v14n3a7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient positioning for X-rays.

Download (544KB)
3. Fig. 2. Oxford radiological decision aid.

Download (555KB)
4. Fig. 3. Decision aid’s predictive performance in identifying suitability for unicompartmental knee arthroplasty.

Download (243KB)
5. Fig. 4. Sensitivity analysis of skyline and stress X-rays.

Download (212KB)
6. Fig. 5. Radiographic assessment of X-rays.

Download (98KB)
7. Fig. 6. Specific findings in X-rays of patients that failed to meet the criteria.

Download (143KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».