Success predictors of decompressive surgical treatment for lumbar degenerative spinal canal stenosis

封面

如何引用文章

详细

BACKGROUND: Decompressive surgical treatment for degenerative lumbar stenosis significantly improves patient clinical status. However, in some cases, patients are not satisfied with the outcomes. Various studies have examined clinical and morphological factors to improve the results of surgical interventions.

AIM: To identify clinical and morphological predictors of the success of decompressive surgical interventions for lumbar degenerative stenosis.

MATERIALS AND METHODS: This retrospective study included 61 patients who underwent surgery for mono- and postsegmental lumbar degenerative stenosis. Clinical and demographic data and the stage of degenerative changes in the functional spinal unit and sagittal balance of the spine were assessed. The success of surgical treatment was defined as simultaneous compliance with three criteria after 6–18 months: achievement of MCID for ODI (≥12%), recalibration of the spinal canal at the level of intervention according to MRI data (Schizas regression to ≥1 stage), and improvement of the patient’s subjective feeling (4–5 on the Likert scale). Logistic regression analysis was used to identify predictors of treatment outcome.

RESULTS: A significant decrease in the intensity of pain syndrome (VAS in back and leg) and an improvement in the quality of life (ODI) after surgery (p <0.001) were found in all patients. In 73.8% of cases, the MCID threshold exceeded for ODI, whereas in 75.41%, patients were satisfied with surgical treatment. The success rate of surgical intervention was 65.57%. In one-factor regression analysis of clinical, demographic, and morphological parameters, the only independent predictor of surgical treatment was neuropathic pain before surgery according to the DN4 questionnaire (OR=1.52; p=0.011).

CONCLUSION: Decompressive surgical treatment for degenerative lumbar stenosis is an effective treatment method, regardless of the extent and degree of degenerative changes in the spinal–motor segments and concomitant degenerative pathology, including disruption of sagittal balance. The predicting factor of the success of decompressive intervention is the severity of preoperative neuropathic pain.

作者简介

Aleksandr Krutko

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: ortho-ped@mail.ru
ORCID iD: 0000-0002-2570-3066
SPIN 代码: 8006-6351

MD, Dr Sci. (Med.)

俄罗斯联邦, Moscow

Anton Nazarenko

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: anazarenko@mail.ru
ORCID iD: 0000-0003-1314-2887
SPIN 代码: 1402-5186

MD, Dr Sci. (Med.), professor of Russian Academy of Sciences

俄罗斯联邦, Moscow

Gleb Balychev

Priorov National Medical Research Center of Traumatology and Orthopedics

编辑信件的主要联系方式.
Email: balichev.gleb@gmail.com
ORCID iD: 0000-0001-7884-6258
SPIN 代码: 9647-8748
俄罗斯联邦, Moscow

Evgenii Baykov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: Evgen-bajk@mail.ru
ORCID iD: 0000-0002-4430-700X
SPIN 代码: 5367-5438

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Olga Leonova

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: onleonova@gmail.com
ORCID iD: 0000-0002-9916-3947
SPIN 代码: 4907-0634

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

参考

  1. Lai MKL, Cheung PWH, Cheung JаPY. A systematic review of developmental lumbar spinal stenosis. European Spine Journal. 2020;29(9):2173–2187. doi: 10.1007/s00586-020-06524-2
  2. Zaina F, Tomkins-Lane C, Carragee E, Negrini S. Surgical versus non-surgical treatment for lumbar spinal stenosis. Cochrane Database of Systematic Reviews. 2016;2016(1):CD010264. doi: 10.1002/14651858.CD010264.pub2
  3. Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation. The Spine Patient Outcomes Research Trial (SPORT): A randomized trial. JAMA. 2006;296(20):2441–2450. doi: 10.1001/jama.296.20.2441
  4. Katz JN, Zimmerman ZE, Mass H, Makhni MC. Diagnosis and Management of Lumbar Spinal Stenosis: A Review. JAMA. 2022;327(17):1688–1699. doi: 10.1001/JAMA.2022.5921
  5. Karlsson T, Försth P, Skorpil M, et al. Decompression alone or decompression with fusion for lumbar spinal stenosis: a randomized clinical trial with two-year MRI follow-up. Bone Jt J. 2022;104B(12):1343–1351. doi: 10.1302/0301-620X.104B12.BJJ-2022-0340.R1
  6. Yamamoto T, Yagi M, Suzuki S, et al. Multilevel Decompression Surgery for Degenerative Lumbar Spinal Canal Stenosis Is Similarly Effective with Single-level Decompression Surgery. Spine (Phila Pa 1976). 2022;47(24):1728–1736. doi: 10.1097/BRS.0000000000004447
  7. Hu Y, Fu H, Yang D, Xu W. Clinical efficacy and imaging outcomes of unilateral biportal endoscopy with unilateral laminotomy for bilateral decompression in the treatment of severe lumbar spinal stenosis. Front Surg. 2023;9:1061566. doi: 10.3389/fsurg.2022.1061566
  8. Mayer HM, List J, Korge A, Wiechert K. Microsurgery of acquired degenerative lumbar spinal stenosis. Bilateral over-the-top decompression through unilateral approach. Orthopade. 2003;32(10):889–895. doi: 10.1007/S00132-003-0536-9
  9. Leonova ON, Baikov ES, Krutko AV. Minimal clinically important difference as a method for assessing the effectiveness of spinal surgery using scales and questionnaires: non-systematic literature review. Hirurgia Pozvonochnika. 2022;19(4):60–67. doi: 10.14531/SS2022.4.60-67
  10. Mohsinaly Y, Boissiere L, Maillot C, Pesenti S, Le Huec JC. Treatment of lumbar canal stenosis in patients with compensated sagittal balance. Orthop Traumatol Surg Res. 2021;107(7):102861. doi: 10.1016/j.otsr.2021.102861
  11. Singh S, Shahi P, Asada T, et al. Poor muscle health and low preoperative ODI are independent predictors for slower achievement of MCID after minimally invasive decompression. Spine J. 2023;23(8):1152–1160. doi: 10.1016/J.SPINEE.2023.04.004
  12. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–1878. doi: 10.1097/00007632-200109010-00011
  13. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–199. doi: 10.1148/radiology.166.1.3336678
  14. Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J. 2008;17(5):626–643. doi: 10.1007/s00586-008-0645-6
  15. Schizas C, Theumann N, Burn A, et al. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976). 2010;35(21):1919–1924. doi: 10.1097/BRS.0b013e3181d359bd
  16. Kitab S, Habboub G, Abdulkareem SB, Alimidhatti MB, Benzel E. Redefining lumbar spinal stenosis as a developmental syndrome: Does age matter? J Neurosurg Spine. 2019;31(3):357–365. doi: 10.3171/2019.2.SPINE181383
  17. Fan N, Yuan S, Du P, et al. Complications and risk factors of percutaneous endoscopic transforaminal discectomy in the treatment of lumbar spinal stenosis. BMC Musculoskelet Disord. 2021;22(1):1041. doi: 10.1186/s12891-021-04940-z
  18. Minetama M, Kawakami M, Teraguchi M, et al. Endplate defects, not the severity of spinal stenosis, contribute to low back pain in patients with lumbar spinal stenosis. Spine J. 2022;22(3):370–378. doi: 10.1016/j.spinee.2021.09.008
  19. Kulkarni AG, Das S. Feasibility and Outcomes of Tubular Decompression in Extreme Stenosis. Spine (Phila Pa 1976). 2020;45(11):E647–E655. doi: 10.1097/BRS.0000000000003359
  20. Jensen OK, Nielsen CV, Sørensen JS, Stengaard-Pedersen K. Type 1 Modic changes was a significant risk factor for 1-year outcome in sick-listed low back pain patients: A nested cohort study using magnetic resonance imaging of the lumbar spine. Spine J. 2014;14(11):2568–2581. doi: 10.1016/j.spinee.2014.02.018
  21. Sheng-yun L, Letu S, Jian C, et al. Comparison of modic changes in the lumbar and cervical spine, in 3167 patients with and without spinal pain. PLoS One. 2014;9(12):e114993. doi: 10.1371/JOURNAL.PONE.0114993
  22. Lambrechts MJ, Issa TZ, Toci GR, et al. Modic Changes of the Cervical and Lumbar Spine and Their Effect on Neck and Back Pain: A Systematic Review and Meta-Analysis. Global Spine Journal. 2022;13(5):1405–1417. doi: 10.1177/21925682221143332
  23. Aaen J, Banitalebi H, Austevoll IM, et al. The association between preoperative MRI findings and clinical improvement in patients included in the NORDSTEN spinal stenosis trial. Eur Spine J. 2022;31(10):2777–2785. doi: 10.1007/S00586-022-07317-5
  24. Chen L, Battié MC, Yuan Y, Yang G, Chen Z, Wang Y. Lumbar vertebral endplate defects on magnetic resonance images: prevalence, distribution patterns, and associations with back pain. Spine J. 2020;20(3):352–360. doi: 10.1016/j.spinee.2019.10.015
  25. Lawan A, Crites Videman J, Battié MC. The association between vertebral endplate structural defects and back pain: a systematic review and meta-analysis. European Spine Journal. 2021;30(9):2531–2548. doi: 10.1007/s00586-021-06865-6
  26. Khalepa RV, Klimov VS, Rzaev JA, VasilenkoII, Konev EV, Amelina EV. Surgical treatment of elderly and senile patients with degenerative central lumbar spinal stenosis. Hirurgia Pozvonochnika. 2018;15(3):73–84. doi: 10.14531/SS2018.3.73-84
  27. Grin АА, Nikitin АS, Kalandari АА, et al. Interlaminar decompression for patients with degenerative lumbar stenosis. Literature review and results of a prospective study. Neyrokhirurgiya. 2019;21(4):57–66. doi: 10.17650/1683-3295-2019-21-4-57-66
  28. Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28(9):1889–1905. doi: 10.1007/S00586-019-06083-1
  29. Schwab F, Ungar B, Blondel B, et al. Scoliosis research society-schwab adult spinal deformity classification: A validation study. Spine (Phila Pa 1976). 2012;37(12):1077–1082. doi: 10.1097/BRS.0b013e31823e15e2
  30. Mikhailovsky MV, Sergunin AYu. Proximal Junctional Kyphosis: a Topical Problem of Modern Spine Surgery. Hirurgia Pozvonochnika. 2014;0(1):11–23. doi: 10.14531/SS2014.1.11-23
  31. Hikata T, Watanabe K, Fujita N, et al. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance. J Neurosurg Spine. 2015;23(4):451–458. doi: 10.3171/2015.1.SPINE14642
  32. Raganato R, Pizones J, Yilgor C, et al. Sagittal realignment: surgical restoration of the global alignment and proportion score parameters: a subgroup analysis. What are the consequences of failing to realign? Eur Spine J. 2023;32(6):2238–2247. doi: 10.1007/s00586-023-07649-w
  33. Ikuta K, Sakamoto K, Hotta K, Kitamura T, Senba H, Shidahara S. Predictors for clinical outcomes of tubular surgery for endoscopic decompression in selected patients with lumbar spinal stenosis. Arch Orthop Trauma Surg. 2022;142(10):2525–2532. doi: 10.1007/S00402-021-03845-9
  34. Knio ZO, Schallmo MS, Wesley H, et al. Unilateral Laminotomy with Bilateral Decompression: A Case Series Studying One- and Two-Year Outcomes with Predictors of Minimal Clinical Improvement. World Neurosurg. 2019;131:e290–e297. doi: 10.1016/J.WNEU.2019.07.144
  35. Goyal DK., Divi SN, Bowles DR, et al. Does Smoking Affect Short-Term Patient-Reported Outcomes After Lumbar Decompression? Glob Spine J. 2021;11(5):727–732. doi: 10.1177/2192568220925791
  36. Costelloe CC, Burns S, Yong RJ, Kaye AD, Urman RD. An Analysis of Predictors of Persistent Postoperative Pain in Spine Surgery. Curr Pain Headache Rep. 2020;24(4):11. doi: 10.1007/s11916-020-0842-5
  37. Holbert SE, Andersen K, Stone D, Pipkin K, Turcotte J, Patton C. Social Determinants of Health Influence Early Outcomes Following Lumbar Spine Surgery. Ochsner J. 2022; 22(4):299–306. doi: 10.31486/toj.22.0066
  38. Vieira ASM, Baptista AF, Mendes L, et al. Impact of neuropathic pain at the population level. J Clin Med Res. 2014;6(2):111–9. doi: 10.14740/JOCMR1675W
  39. Hiyama A, Katoh H, Nomura S, Sakai D, Watanabe M. The Effect of Preoperative Neuropathic Pain and Nociceptive Pain on Postoperative Pain Intensity in Patients with the Lumbar Degenerative Disease Following Lateral Lumbar Interbody Fusion. World Neurosurg. 2022;164:e814–e823. doi: 10.1016/j.wneu.2022.05.050
  40. Vagaska E, Litavcova A, Srotova I, et al. Do lumbar magnetic resonance imaging changes predict neuropathic pain in patients with chronic non-specific low back pain? Med (United States). 2019;98(17):e15377. doi: 10.1097/MD.0000000000015377
  41. Park SY, An HS, Moon SH, et al. Neuropathic Pain Components in Patients with Lumbar Spinal Stenosis. Yonsei Med J. 2015;56(4):1044–1050. doi: 10.3349/YMJ.2015.56.4.1044
  42. Boakye LAT, Fourman MS, Spina NT, Laudermilch D, Lee JY. ‘Post-decompressive neuropathy’: New-onset post-laminectomy lower extremity neuropathic pain different from the preoperative complaint. Asian Spine J. 2018;12(6):1043–1052. doi: 10.31616/asj.2018.12.6.1043

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Patient B., 83 years old. VAS in back — 5 points; VAS in leg — 8 points. ODI=47.5%. DN-4 — 2 points. MRI of the lumbar spine — degenerative stenosis L4-L5 Schizas grade D, degenerative spondylolisthesis L4 grade I. (Fig. 1, a, b). Postural radiography of the spine — Barrey Index = 1.76 (Fig. 1, c). Surgical treatment — microsurgical “over-the-top” decompression at L4-L5. Lumbar spine MRI after 1 year — recalibration of the spinal canal to Schizas grade A4 (Fig. 1, d, e). ODI — 4.0%, VAS in leg — 0 points, VAS in back — 3 points. Regression according to ODI by 43.50%, recalibration of the spinal canal confirmed, satisfaction with surgical treatment on the Likert scale: 5 — “Much better than before the surgery”. Treatment success achieved.

下载 (476KB)
3. Fig. 2. Patient I., 62 years old: VAS in back — 4 points, VAS in legs — 5 points, ODI=64.44%, DN4 before surgery — 7 points; a, b — MRI lumbar spine — degenerative stenosis L3-L4, Schizas grade C (Fig. 2, a, b); Postural radiography of the spine — Barrey Index =0.71 (Fig. 2, c). Surgical treatment — microsurgical “over-the-top” decompression at L3-L4. Despite the achieved recalibration to Schizas grade B, the patient continues to have pain in the lower extremities. ODI — 48.89%, VAS in legs — 4 points, VAS in back — 3 points. Clinical success achieved — ODI regression by 15.5% recalibration of the spinal canal, but the patient is not satisfied with the result of surgical treatment — 3 on the Likert scale (“state without change”). The high value of neuropathic pain remains: DN4=7 points. Surgical treatment defined unsuccessful.

下载 (432KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».