Posterior pelvic ring injuries: classification, diagnosis, methods of treatment

封面

如何引用文章

全文:

详细

This article aimed to familiarize the reader with the features of classification, diagnosis, and treatment methods of posterior pelvic ring injuries. It presents a review of literatures from PubMed (MEDLINE) and eLibrary investigating posterior pelvic ring injuries. A total of 67 scientific papers were covered. Modern aspects of classification, diagnostics, and surgical methods of treatment of the posterior pelvic ring injuries were analyzed. However, the classification of posterior pelvic injuries remains a difficult problem. Currently, various classifications of sacral fractures have been proposed, but sacral fractures cannot be considered separately from the entire pelvic ring because it is not only a part of the spine but also of the pelvis. The gold standard diagnostic modality of a patient with suspected pelvic ring damage is computed tomography, which reduces the frequency of missed or delayed diagnosis of pelvic injuries. Spino-pelvic fixation in combination with iliosacral screws or plate (triangular osteosynthesis) is the most stable technique for the stabilization of the dorsal pelvic ring. However, the higher risks of failure of the postoperative wound and the risks of deep infection with subsequent removal of the metal fixator should be considered. In the absence of clinically significant displacement, but in the presence of pelvic ring instability, minimally invasive methods of the stabilization of the posterior pelvic ring are preferred.

作者简介

Nikolay Aganesov

Priorov National Medical Research Center for Traumatology and Orthopedics

编辑信件的主要联系方式.
Email: kolyanzer@yandex.ru
ORCID iD: 0000-0001-5383-6862
SPIN 代码: 1805-5790
Scopus 作者 ID: 57209323258

traumatologist-orthopedist

俄罗斯联邦, Moscow

Anatoly Lazarev

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: cito-spine@mail.ru

MD, Dr. Sci. (Med.), traumatologist-orthopedist

俄罗斯联邦, Moscow

Aleksandr Kuleshov

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: cito-spine@mail.ru
ORCID iD: 0000-0002-9526-8274
SPIN 代码: 7052-0220

MD, Dr. Sci. (Med.), traumatologist-orthopedist

俄罗斯联邦, Moscow

Marchel Vetrile

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: vetrilams@cito-priorov.ru
ORCID iD: 0000-0001-6689-5220
SPIN 代码: 9690-5117

MD, Cand. Sci. (Med.), traumatologist-orthopedist

俄罗斯联邦, Moscow

Igor Lisyansky

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: lisigornik@list.ru
ORCID iD: 0000-0002-2479-4381
SPIN 代码: 9845-1251

MD, Cand. Sci. (Med.), traumatologist-orthopedist

俄罗斯联邦, Moscow

Sergey Makarov

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: moscow.makarov@gmail.com
ORCID iD: 0000-0003-0406-1997
SPIN 代码: 2767-2429

MD, Cand. Sci. (Med.), traumatologist-orthopedist

俄罗斯联邦, Moscow

Vitaly Zakharin

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: zakhvit@gmail.com
ORCID iD: 0000-0003-1553-2782
SPIN 代码: 2931-0703

traumatologist-orthopedist

俄罗斯联邦, Moscow

参考

  1. van Berkel D, Ong T, Drummond A, et al. ASSERT (Acute Sacral inSufficiEncy fractuRe augmenTation) randomised controlled, feasibility in older people trial: a study protocol. BMJ Open. 2019;9(7):e032111. doi: 10.1136/bmjopen-2019-032111
  2. Tamaki Y, Nagamachi A, Inoue K, et al. Incidence and clinical features of sacral insufficiency fracture in the emergency department. Am J Emerg Med. 2017;35(9):1314–1316. doi: 10.1016/j.ajem.2017.03.037
  3. Bydon M, Fredrickson V, De la Garza-Ramos R, et al. Sacral fractures. Neurosurg Focus. 2014;37(1):E12. doi: 10.3171/2014.5.FOCUS1474
  4. Lazarev AF. Operativnoe lechenie povrezhdenii taza [dissertation]. Moscow; 1992. Available from: https://medical-diss.com/docreader/526577/a?#?page=1. Accessed: 23.11.2022. (In Russ).
  5. Beckmann N, Cai C. CT characteristics of traumatic sacral fractures in association with pelvic ring injuries: correlation using the Young-Burgess classification system. Emerg Radiol. 2017;24(3):255–262. doi: 10.1007/s10140-016-1476-0
  6. Meinberg EG, Agel J, Roberts CS, et al. Fracture and dislocation classification compendium-2018. J Orthop Trauma. 2018;32 suppl. 1:S1–S170. doi: 10.1097/bot.0000000000001063
  7. Burgess AR, Eastridge BJ, Young JW, et al. Pelvic ring disruptions: effective classification system and treatment protocols. J Trauma. 1990;30(7):848–856.
  8. Katsuura Y., Lorenz E., Gardner W. 2nd. Anatomic parameters of the sacral lamina for osteosynthesis in transverse sacral fractures. Surg Radiol Anat. 2018;40(5):521–528. doi: 10.1007/s00276-017-1955-3
  9. Bäcker HC, Wu CH, Vosseller JT, et al. Spinopelvic dissociation in patients suffering injuries from airborne sports. Eur Spine J. 2020;29(10):2513–2520. doi: 10.1007/s00586-019-05983-6
  10. Lehmann W, Hoffmann M, Briem D, et al. Management of traumatic spinopelvic dissociations: review of the literature. Eur J Trauma Emerg Surg. 2012;38(5):517–524. doi: 10.1007/s00068-012-0225-7
  11. Denis F, Davis S, Comfort T. Sacral fractures: an important problem. Retrospective analysis of 236 cases. Clin Orthop Relat Res. 1988;227:67–81.
  12. Strange-Vognsen HH, Lebech A. An unusual type of fracture in the upper sacrum. J Orthop Trauma. 1991;5(2):200–203. doi: 10.1097/00005131-199105020-00014
  13. Bishop JA, Dangelmajer S, Corcoran-Schwartz I, et al. Bilateral Sacral Ala Fractures Are Strongly Associated With Lumbopelvic Instability. J Orthop Trauma. 2017;31(12):636–639. doi: 10.1097/bot.0000000000000972
  14. Isler B. Lumbosacral lesions associated with pelvic ring injuries. J Orthop Trauma. 1990;4(1):1–6. doi: 10.1097/00005131-199003000-00001
  15. Guerado E, Cervan AM, Cano JR, Giannoudis PV. Spinopelvic injuries. Facts and controversies. Injury. 2018;49(3):449–456. doi: 10.1016/j.injury.2018.03.001
  16. Hanna TN, Sadiq M, Ditkofsky N, et al. Sacrum and Coccyx Radiographs Have Limited Clinical Impact in the Emergency Department. AJR Am J Roentgenol. 2016;206(4):681–686. doi: 10.2214/AJR.15.15095
  17. Stoyukhin SS, Lazarev AF, Gudushauri YG. Actual features of express diagnostic of acetabular fractures. Part III. Atypical fractures diagnostic algorithm. Associated local injuries. N.N. Priorov Journal of Traumatology and Orthopedics. 2020;27(1):91–97. (In Russ). doi: 10.17816/vto202027191-97
  18. Kao FC, Hsu YC, Liu PH, et al. Osteoporotic sacral insufficiency fracture: An easily neglected disease in elderly patients. Medicine (Baltimore). 2017;96(51):e9100. doi: 10.1097/MD.0000000000009100
  19. Wagner D, Ossendorf C, Gruszka D, et al. Fragility fractures of the sacrum: how to identify and when to treat surgically? Eur J Trauma Emerg Surg. 2015;41(4):349–362. doi: 10.1007/s00068-015-0530-z
  20. Mandell JC, Weaver MJ, Khurana B. Computed tomography for occult fractures of the proximal femur, pelvis, and sacrum in clinical practice: single institution, dual-site experience. Emerg Radiol. 2018;25(3):265–273. doi: 10.1007/s10140-018-1580-4
  21. Na WC, Lee SH, Jung S, et al. Pelvic Insufficiency Fracture in Severe Osteoporosis Patient. Hip Pelvis. 2017;29(2):120–126. doi: 10.5371/hp.2017.29.2.120
  22. Baldwin MJ, Tucker LJ. Sacral insufficiency fractures: a case of mistaken identity. Int Med Case Rep J. 2014;7:93–98. doi: 10.2147/IMCRJ.S60133
  23. Kinoshita H, Miyakoshi N, Kobayashi T, et al. Comparison of patients with diagnosed and suspected sacral insufficiency fractures. J Orthop Sci. 2019;24(4):702–707. doi: 10.1016/j.jos.2018.12.004
  24. Yoder K, Bartsokas J, Averell K, et al. Risk factors associated with sacral stress fractures: a systematic review. J Man Manip Ther. 2015;23(2):84–92. doi: 10.1179/2042618613Y.0000000055
  25. Wang B, Fintelmann FJ, Kamath RS, et al. Limited magnetic resonance imaging of the lumbar spine has high sensitivity for detection of acute fractures, infection, and malignancy. Skeletal Radiol. 2016;45(12):1687–1693. doi: 10.1007/s00256-016-2493-5
  26. Zhang L, He Q, Jiang M, et al Diagnosis of Insufficiency Fracture After Radiotherapy in Patients With Cervical Cancer: Contribution of Technetium Tc 99m-Labeled Methylene Diphosphonate Single-Photon Emission Computed Tomography / Computed Tomography. Int J Gynecol Cancer. 2018;28(7):1369–1376. doi: 10.1097/IGC.0000000000001337
  27. Höch A, Schneider I, Todd J, et al. Lateral compression type B 2-1 pelvic ring fractures in young patients do not require surgery. Eur J Trauma Emerg Surg. 2018;44(2):171–177. doi: 10.1007/s00068-016-0676-3
  28. Sommer C. Fixation of transverse fractures of the sternum and sacrum with the locking compression plate system: two case reports. J Orthop Trauma. 2005;19(7):487–490. doi: 10.1097/01.bot.0000149873.99394.86
  29. Baillieul S, Guinot M, Dubois C, et al. Set the pace of bone healing — Treatment of a bilateral sacral stress fracture using teriparatide in a long-distance runner. Joint Bone Spine. 2017;84(4):499–500. doi: 10.1016/j.jbspin.2016.06.003
  30. Beckmann NM, Chinapuvvula NR. Sacral fractures: classification and management. Emerg Radiol. 2017;24(6):605–617. doi: 10.1007/s10140-017-1533-3
  31. Pulley BR, Cotman SB, Fowler TT. Surgical Fixation of Geriatric Sacral U-Type Insufficiency Fractures: A Retrospective Analysis. J Orthop Trauma. 2018;32(12):617–622. doi: 10.1097/BOT.0000000000001308
  32. Halawi MJ. Pelvic ring injuries: Surgical management and long-term outcomes. J Clin Orthop Trauma. 2016;7(1):1–6. doi: 10.1016/j.jcot.2015.08.001
  33. Santolini E, Kanakaris NK, Giannoudis PV. Sacral fractures: issues, challenges, solutions. EFORT Open Rev. 2020;5(5):299–311. doi: 10.1302/2058-5241.5.190064
  34. Lehman RA Jr, Kang DG, Bellabarba C. A new classification for complex lumbosacral injuries. Spine J. 2012;12(7):612–628. doi: 10.1016/j.spinee.2012.01.009
  35. Vigdorchik JM, Jin X, Sethi A, et al. A biomechanical study of standard posterior pelvic ring fixation versus a posterior pedicle screw construct. Injury. 2015;46(8):1491–1496. doi: 10.1016/j.injury.2015.04.038
  36. Takao M, Hamada H, Sakai T, Sugano N. Factors influencing the accuracy of iliosacral screw insertion using 3D fluoroscopic navigation. Arch Orthop Trauma Surg. 2019;139(2):189–195. doi: 10.1007/s00402-018-3055-1
  37. El Dafrawy MH, Strike SA, Osgood GM. Use of the S3 Corridor for Iliosacral Fixation in a Dysmorphic Sacrum: A Case Report. JBJS Case Connect. 2017;7(3):e62. doi: 10.2106/JBJS.CC.17.00058
  38. Lucas JF, Routt ML Jr, Eastman JG. A Useful Preoperative Planning Technique for Transiliac-Transsacral Screws. J Orthop Trauma. 2017;31(1):e25–e31. doi: 10.1097/BOT.0000000000000708
  39. Liuzza F, Silluzio N, Florio M, et al. Comparison between posterior sacral plate stabilization versus minimally invasive transiliac-transsacral lag-screw fixation in fractures of sacrum: a single-centre experience. Int Orthop. 2019;43(1):177–185. doi: 10.1007/s00264-018-4144-z
  40. Williams SK, Quinnan SM. Percutaneous Lumbopelvic Fixation for Reduction and Stabilization of Sacral Fractures With Spinopelvic Dissociation Patterns. J Orthop Trauma. 2016;30(9):e318–e324. doi: 10.1097/BOT.0000000000000559
  41. Bourghli A, Boissiere L, Obeid I. Dual iliac screws in spinopelvic fixation: a systematic review. Eur Spine J. 2019;28(9):2053–2059. doi: 10.1007/s00586-019-06065-3
  42. Mohd Asihin MA, Bajuri MY, Ahmad AR, et al. Spinopelvic fixation supplemented with gullwing plate for multiplanar sacral fracture with spinopelvic dissociation: a case series with short term follow up. Front Surg. 2019;6:42. doi: 10.3389/fsurg.2019.00042
  43. Backer HC, Wu CH, Vosseller JT, et al. Spinopelvic dissociation in patients suffering injuries from airborne sports. Eur Spine J. 2020;29(10):2513–2520. doi: 10.1007/s00586-019-05983-6
  44. Krappinger D, Lindtner RA, Benedikt S. Preoperative planning and safe intraoperative placement of iliosacral screws under fluoroscopic control. Oper Orthop Traumatol. 2019;31(6):465–473. doi: 10.1007/s00064-019-0612-x
  45. Kim JW, Oh CW, Oh JK, et al. The incidence of and factors affecting iliosacral screw loosening in pelvic ring injury. Arch Orthop Trauma Surg. 2016;136(7):921–927. doi: 10.1007/s00402-016-2471-3
  46. Maki S, Nakamura K, Yamauchi T, et al. Lumbopelvic Fixation for Sacral Insufficiency Fracture Presenting with Sphincter Dysfunction. Case Rep Orthop. 2019;2019:9097876. doi: 10.1155/2019/9097876
  47. Hopf JC, Krieglstein CF, Müller LP, Koslowsky TC. Percutaneous iliosacral screw fixation after osteoporotic posterior ring fractures of the pelvis reduces pain significantly in elderly patients. Injury. 2015;46(8):1631–1636. doi: 10.1016/j.injury.2015.04.036
  48. Kortman K, Ortiz O, Miller T, et al. Multicenter study to assess the efficacy and safety of sacroplasty in patients with osteoporotic sacral insufficiency fractures or pathologic sacral lesions. J Neurointerv Surg. 2013;5(5):461–466. doi: 10.1136/neurintsurg-2012-010347
  49. König MA, Jehan S, Boszczyk AA, Boszczyk BM. Surgical management of U-shaped sacral fractures: a systematic review of current treatment strategies. Eur Spine J. 2012;21(5):829–836. doi: 10.1007/s00586-011-2125-7
  50. Yang F, Yao S, Chen KF, et al. A novel patient-specific three-dimensional-printed external template to guide iliosacral screw insertion: a retrospective study. BMC Musculoskelet Disord. 2018;19(1):397. doi: 10.1186/s12891-018-2320-3
  51. Pascal-Moussellard H, Hirsch C, Bonaccorsi R. Osteosynthesis in sacral fracture and lumbosacral dislocation. Orthop Traumatol Surg Res. 2016;102(1 Suppl):S45–S57. doi: 10.1016/j.otsr.2015.12.002
  52. Zhang R, Yin Y, Li S, et al. Sacroiliac screw versus a minimally invasive adjustable plate for Zone II sacral fractures: a retrospective study. Injury. 2019;50(3):690–696. doi: 10.1016/j.injury.2019.02.011
  53. Kanezaki S, Miyazaki M, Notani N, et al. Minimally invasive triangular osteosynthesis for highly unstable sacral fractures: Technical notes and preliminary clinical outcomes. Medicine (Baltimore). 2019;98(24):e16004. doi: 10.1097/MD.0000000000016004
  54. Yu YH, Lu ML, Tseng IC, et al. Effect of the subcutaneous route for iliac screw insertion in lumbopelvic fixation for vertical unstable sacral fractures on the infection rate: A retrospective case series. Injury. 2016;47(10):2212–2217. doi: 10.1016/j.injury.2016.06.021
  55. Osterhoff G, Noser J, Sprengel K, et al. Rate of intraoperative problems during sacroiliac screw removal: expect the unexpected. BMC Surg. 2019;19(1):39. doi: 10.1186/s12893-019-0501-0
  56. Yang SC, Tsai TT, Chen HS, et al. Comparison of sacroplasty with or without balloon assistance for the treatment of sacral insufficiency fractures. J Orthop Surg (Hong Kong). 2018;26(2):2309499018782575. doi: 10.1177/2309499018782575
  57. Adelved A, Tötterman A, Glott T, et al. Patient-reported health minimum 8 years after operatively treated displaced sacral fractures: a prospective cohort study. J Orthop Trauma. 2014;28(12):686–693. doi: 10.1097/BOT.0000000000000242
  58. Loggers SAI, Joosse P, Jan Ponsen K. Outcome of pubic rami fractures with or without concomitant involvement of the posterior ring in elderly patients. Eur J Trauma Emerg Surg. 2019;45(6):1021–1029. doi: 10.1007/s00068-018-0971-2
  59. Walker JB, Mitchell SM, Karr SD, et al. Percutaneous Transiliac-Transsacral Screw Fixation of Sacral Fragility Fractures Improves Pain, Ambulation, and Rate of Disposition to Home. J Orthop Trauma. 2018;32(9):452–456. doi: 10.1097/BOT.0000000000001243
  60. Lindahl J, Mäkinen TJ, Koskinen SK, Söderlund T. Factors associated with outcome of spinopelvic dissociation treated with lumbopelvic fixation. Injury. 2014;45(12):1914–1920. doi: 10.1016/j.injury.2014.09.003
  61. Lee HD, Jeon CH, Won SH, Chung NS. Global Sagittal Imbalance Due to Change in Pelvic Incidence After Traumatic Spinopelvic Dissociation. J Orthop Trauma. 2017;31(7):e195–e199. doi: 10.1097/BOT.0000000000000821
  62. Lee JS, Kim YH. Factors associated with gait outcomes in patients with traumatic lumbosacral plexus injuries. Eur J Trauma Emerg Surg. 2020;46(6):1437–1444. doi: 10.1007/s00068-019-01137-x
  63. Adelved A, Tötterman A, Hellund JC, et al. Radiological findings correlate with neurological deficits but not with pain after operatively treated sacral fractures. Acta Orthop. 2014;85(4):408–414. doi: 10.3109/17453674.2014.908344
  64. Bekmez S, Demirkıran G, Caglar O, et al. Transverse sacral fractures and concomitant late-diagnosed cauda equina syndrome. Ulus Travma Acil Cerrahi Derg. 2014;20(1):71–74. doi: 10.5505/tjtes.2014.21208
  65. Kepler CK, Schroeder GD, Hollern DA, et al. Do Formal Laminectomy and Timing of Decompression for Patients With Sacral Fracture and Neurologic Deficit Affect Outcome? J Orthop Trauma. 2017; 31 Suppl 4:S75–S80. doi: 10.1097/BOT.0000000000000951
  66. Bai Z, Gao S, Liu J, et al. Anatomical evidence for the anterior plate fixation of sacroiliac joint. J Orthop Sci. 2018;23(1):132–136. doi: 10.1016/j.jos.2017.09.003
  67. Schroeder GD, Kurd MF, Kepler CK, et al. The Development of a Universally Accepted Sacral Fracture Classification: A Survey of AOSpine and AOTrauma Members. Global Spine J. 2016;6(7):686–694. doi: 10.1055/s-0036-1580611

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. AO/OTA classification of pelvic fractures: type a — stable injuries in which the integrity of the bone-ligamentous apparatus of the posterior pelvic ring is not broken, the pelvic diaphragm is intact; type b — partially stable, accompanied by incomplete rupture of the posterior pelvic ring and pelvic diaphragm, in which rotational instability may occur; type c — unstable damage of the pelvic ring with complete loss of integrity of the posterior pelvic ring and pelvic diaphragm, rotational and vertical instability [6].

下载 (208KB)
3. Fig. 2. Young–Burgess classification [7]. LC — lateral compression: 1 — compression fractures of the pubic rami (superior pubic ramus and inferior pubic ramus) and ipsilateral anterior sacral ala; 2 — rami fracture and ipsilateral posterior ilium fracture dislocation; 3 — ipsilateral lateral compression and contralateral APC (windswept pelvis). APC — anterior posterior compression: 1 — symphysis widening <2.5 cm; 2 — symphysis widening >2.5 cm, anterior SI joint diastasis, disruption of sacrospinous and sacrotuberous ligaments; 3 — SI dislocation with associated vascular injury. VS — vertical shear: posterior and superior directed force.

下载 (188KB)
4. Fig. 3. Classification of combined sacral fractures according to the sacral fracture line: I — U-shaped; II — H-shaped; III — T-shaped; IV — λ-shaped [9].

下载 (99KB)
5. Fig. 4. The Denis classification: zone I — fracture involves the sacral ala lateral to the foramina; zone II — fracture at the level of the foramina; zone III — fracture affects the sacral canal medial to the neural foramina [11].

下载 (55KB)
6. Fig. 5. The Roy-Camille classification: type I — fractures show kyphotic angulation only; type II — fractures demonstrate both kyphosis and retrolisthesis; type III — fractures have complete anteriorlisthesis; type IV — fractures characterized by severe comminution of the SI body [13].

下载 (59KB)
7. Fig. 6. Isler classification of the lumbosacral injuries: type I — the fracture line is lateral to the facet joint LV–SI; type II — the fracture line passes through the facet joint LV–SI; type III — the fracture line is medial to the facet joint LV–SI [14].

下载 (94KB)
8. Fig. 7. Transiliac bridging systems [19, 39]. a — AP-radiograph of the pelvis, showing transiliac bridge fixation of the posterior pelvic ring with a transsacral bar, b — AP-radiograph of the pelvis, showing transiliac bridge fixation of the posterior pelvic ring with a plate.

下载 (165KB)
9. Fig. 8. Triangular fixation of the posterior pelvic ring [42]. a — intraoperative photo, b — AP-radiograph of the pelvis.

下载 (279KB)

版权所有 © Eco-Vector, 2022



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».