Barrier Properties of the Intestinal Epithelium in the Dynamics of Nephropathy Progression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study investigated the effect of 5/6 nephrectomy on the barrier properties of the rats jejunum and colon in the long postoperative period (two, four and six months). It was shown that animals with kidney dysfunction developed progressive azotemia, hypernatremia and hyperkalemia, as well as increased levels of uremic toxins (TMAO and TMA), accompanied by an increase in blood pressure. Two months after nephrectomy, a decrease in short-circuit current and an increase in paracellular permeability were observed in the jejunum, but the transepithelial resistance (TER) did not change. In the colon at this time, an increase in TER and permeability to sodium fluorescein was noted with a decrease in short-circuit current. At the fourth month, the jejunum retained morphological changes in villi and crypts, but the barrier function stabilized due to a compensatory increase in occludin levels with a decrease in claudin-1. Increased permeability remained in the colon without significant changes in the expression of the studied proteins of tight junctions. Six months after nephrectomy, differences in permeability and protein content of tight junctions were leveled compared with the control, although morphological disorders of the epithelium persisted. The results of the study show the potential for restoring the intestinal barrier within six months after the nephrectomy.

About the authors

A. A Fedorova

Saint Petersburg State University

Saint Petersburg, Russia

M. O Pyatchenkov

S.M. Kirov Military Medical Academy

Saint Petersburg, Russia

E. A Dmitrieva

Saint Petersburg State University

Saint Petersburg, Russia

E. A Kalashnikov

Pavlov Institute of Physiology, Russian Academy of Sciences

Saint Petersburg, Russia

G. T Ivanova

Pavlov Institute of Physiology, Russian Academy of Sciences

Saint Petersburg, Russia

A. G Markov

Saint Petersburg State University; Pavlov Institute of Physiology, Russian Academy of Sciences

Email: a.markov@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Russia

References

  1. Marina AS, Katina AV, Shakhmatoba EI, Natochin YV (2017) Involvement of Glucagon-Like Peptide-1 in the Regulation of Selective Excretion of Sodium or Chloride Ions by the Kidneys. Bull Exp Biol Med 162(4): 436–440. https://doi.org/10.1007/s10517-017-3634-0
  2. Ellison DH, Felker GM (2017) Diuretic Treatment in Heart Failure. N Engl J Med 377(20): 1964–1975. https://doi.org/10.1056/NEJMra1703100
  3. Yeh TH, Tu KC, Wang HY, Chen JY (2024) From Acute to Chronic: Unraveling the Pathophysiological Mechanisms of the Progression from Acute Kidney Injury to Acute Kidney Disease to Chronic Kidney Disease. Int J Mol Sci 25(3): 1755. https://doi.org/10.3390/ijms25031755
  4. Inagi R (2015) The gut-kidney connection in advanced chronic kidney disease. Kidney Res Clin Pract 34(4): 191–193. https://doi.org/10.1016/j.krcp.2015.08.007
  5. Kujal P, Vernerová Z (2008) 5/6 nephrectomy as an experimental model of chronic renal failure and adaptation to reduced nephron number. Cesk Fysiol 57(4): 104–109.
  6. Inoue H, Kozlowski SD, Klein JD, Bailey JL, Sands JM, Bagnasco SM (2005) Regulated expression of renal and intestinal UT-B urea transporter in response to varying urea load. Am J Physiol Renal Physiol 289(2): F451–F458. https://doi.org/10.1152/ajprenal.00376.2004
  7. Collins D, Walpole C, Ryan E, Winter D, Baird A, Stewart GJ (2011) UT-B1 mediates transepithelial urea flux in the rat gastrointestinal tract. J Membr Biol 239(3): 123–130. https://doi.org/10.1007/s00232-010-9331-9
  8. Yano H, Tamura Y, Kobayashi K, Tanemoto M, Uchida S (2014) Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp Nephrol 18(1): 50–55. https://doi.org/10.1007/s10157-013-0806-8
  9. Walpole C, McGrane A, Al-Mousawi H, Winter D, Baird A, Stewart G (2018) Investigation of facilitative urea transporters in the human gastrointestinal tract. Physiol Rep 6(12): e13826. https://doi.org/10.14814/phy2.13826
  10. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286(6): C1213–C1228. https://doi.org/10.1152/ajpcell.00558.2003
  11. Citi S, Fromm M, Furuwe M, Gonzalez-Mariscal L, Nusrat A, Tsukita S, Turner JR (2024) A short guide to the tight junction. J Cell Sci 137(9): jcs261776. https://doi.org/10.1242/jcs.261776
  12. Markov AG, Aschenbach JR, Amasheh S (2015) Claudin clusters as determinants of epithelial barrier function. IUBMB Life 67(1): 29–35. https://doi.org/10.1002/iub.1347
  13. Cahyawati PN, Satriyasa BK (2021) Subtotal Nephrectomy as a Model of Chronic Kidney Disease: A Systematic Review. Ind J Public Health Res Dev 12(3): 150–157. https://doi.org/10.37506/ijphrd.v12i3.16058
  14. Vaziri ND, Yuan J, Nazertehrani S, Ni Z, Liu SM (2013) Chronic Kidney Disease Causes Disruption of Gastric and Small Intestinal Epithelial Tight Junction. Am J Nephrol 38: 99–103. https://doi.org/10.1159/000353104
  15. Maloy A, Alexander S, Andreas A, Nyunoya T, Chandra D (2022) Stain-Free total-protein normalization enhances the reproducibility of Western blot data. Anal Biochem 654: 114840. https://doi.org/10.1016/j.ab.2022.114840
  16. Lau WL, Liu SM, Pahlevan S, Yuan J, Khazaeli M, Ni Z, Chan JY, Vaziri ND (2015) Role of Nrf2 dysfunction in uremia-associated intestinal inflammation and epithelial barrier disruption. Dig Dis Sci 60(5): 1215–1222.
  17. Chaszczewska-Markowska M, Sagan M, Bogunia-Kubik K (2016) The renin-angiotensin-aldosterone system (RAAS) – physiology and molecular mechanisms of functioning. Adv Hyg Exp Med 70: 917–927. https://doi.org/10.5604/17322693.1218180
  18. Lim BJ, Yang HC, Fogo AB (2014) Animal models of regression/progression of kidney disease. Drug Discov Today Dis Models 11: 45–51. https://doi.org/10.1016/j.ddmod.2014.06.003
  19. Gonzalez A, Krieg R, Massey HD, Carl D, Ghosh S, Gehr TWB, Ghosh SS (2019) Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol Dial Transplant 34(5): 783–794. https://doi.org/10.1093/ndt/gfy238
  20. Freire E, Albuquerque J, Leal I, Santos C, Lima J, Santos J, Mota A, Silva J (2019) Effect of chronic renal dysfunction on the permeability of the colon to water and electrolytes: experimental study in rats. Braz Arch Dig Surg 32(4): e1472. https://doi.org/10.1590/0102-672020190001e1472
  21. Peng L, Li Z, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9): 1619–1625. https://doi.org/10.3945/jn.109.104638
  22. Chan J, Toldi G (2022) The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients 14(18): 3670. https://doi.org/10.3390/nu14183670
  23. Yan H, Ajuwon KM (2017) Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12(6): e0179586. https://doi.org/10.1371/journal.pone.0179586
  24. Yang J, Lim SY, Ko YS, Lee HY, Oh SW, Kim MG, Cho WY, Jo SK (2019) Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant 34(3): 419–428. https://doi.org/10.1093/ndt/gfy172
  25. Zhu J, Li X, Deng N, Peng X, Tan Z (2022) Diarrhea with deficiency kidney-yang syndrome caused by adenine combined with Folium senna was associated with gut mucosal microbiota. Front Microbiol 13: 1007609. https://doi.org/10.3389/fmicb.2022.1007609
  26. Markov AG, Fedorova AA, Kravtsova VV, Bikmuzzina AE, Okorokova LS, Matchkov VV, Cornelius V, Amasheh S, Krivoi II (2020) Circulating Ouabain Modulates Expression of Claudins in Rat Intestine and Cerebral Blood Vessels. Int J Mol Sci 21(14): 5067. https://doi.org/10.3390/ijms21145067

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).