Methods for evaluating gray matter contour similarity in transverse slices of the mammalian spinal cord

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spinal cord may be divided into segments. The neural networks of different segment groups control, in particular, locomotion and visceral functions. Spinal cord segments serve as critical topographic landmarks for both experimental and therapeutic interventions. 
However, accurate identification of segment positions in vivo, particularly through automated methods, remains challenging: in mammals, some spinal cord segments are displaced rostrally (ascend) relative to their corresponding vertebrae, and the extent of this displacement varies even within a single species. One solution to this problem may be the use of reference images of slices of segments taken, for example, from histological atlases of the spinal cord. In this paper, we investigate various methods for analyzing the similarity of gray matter contours in transverse slices of the mammalian spinal cord, which allow us to determine whether a slice belongs to a certain segment. We consider the methods for
analyzing slices obtained from one animal (based on the Jaccard coefficient, the metric of distances between contours, correlation analysis of R-φ curves, or Hu invariant moments), as well as the methods for comparing images of spinal cord segments with reference ones (correlation analysis of R-φ curves, Hu invariant moments). The results obtained allow us to assume that the method of determining segments by comparing tomographic or histological images of spinal cord ransverse slices at different levels with a certain database containing a set of reference images of slices of specific segments, based on Hu invariant moments, is the most effective of those considered.

About the authors

V. A. Lyakhovetskii

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: mer-natalia@yandex.ru
St. Petersburg, Russia

P. Y. Shkorbatova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: mer-natalia@yandex.ru
St. Petersburg, Russia

A. A. Veshchitskii

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: mer-natalia@yandex.ru
St. Petersburg, Russia

N. S. Merkulyeva

Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: mer-natalia@yandex.ru
St. Petersburg, Russia

References

  1. Nieuwenhuys R (1964) Comparative anatomy of the spinal cord. Prog Brain Res 11: 1–57. https://doi.org/10.1016/S0079-6123(08)64043-1
  2. Порсева ВВ, Шилкин ВВ (2016) Строение серого вещества спинного мозга: неопределенности и перспективы исследования. Тихоокеанск мед журн 64: 20–30. [Porseva VV, Shilkin VV (2016) Gray matter structure of the spinal cord: Uncertainties and research prospects. Tikhookeansk med zhurn 64: 20–30. (In Russ)].
  3. Shah PK, Sureddi S, Alam M, Zhong H, Roy RR, Edgerton VR, Gerasimenko Y (2016) Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success after spinal cord injury. J Neurotrauma 33: 1709–1723. https://doi.org/10.1089/neu.2015.4256
  4. Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bézard E, Micera S, Courtine G (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22: 138–145. https://doi.org/10.1038/nm.4025
  5. Merkulyeva N, Veshchitskii A, Gorsky O, Pavlova N, Zelenin PV, Gerasimenko Y, Deliagina TG, Musienko P (2018) Distribution of spinal neuronal networks controlling forward and backward locomotion. J Neurosci 38: 4695–4707. https://doi.org/10.1523/JNEUROSCI.2951-17.2018
  6. Mesbah S, Herrity A, Ugiliweneza B, Angeli C, Gerasimenko Y, Boakye M, Harkema S (2022) Neuroanatomical mapping of the lumbosacral spinal cord in individuals with chronic spinal cord injury. Brain Commun 5: cac330. https://doi.org/10.1093/braincomms/fcac330
  7. Fredeen HT, Newman JA (1962) Rib and vertebral numbers in swine: I. Variation observed in a large population. Can J Anim Sci 42: 232–239. https://doi.org/10.4141/cjas62-036
  8. Greenaway J, Partlow G, Gonsholt N, Fisher K (2001) Anatomy of the lumbosacral spinal cord in rabbits. J Am Anim Hosp Assoc 37: 27–34. https://doi.org/10.5326/15473317-37-1-27
  9. Li C, Zhang X, Cao Y, Wei J, You S, Jiang Y, Cai K, Wumaier W, Guo D, Qi J, Chen C, Ni W, Hu S (2017) Multi-vertebrae variation potentially contribute to carcass length and weight of Kazakh sheep. Small Rumin Res 150: 8–10. https://doi.org/10.1016/j.smallrumres.2017.02.021
  10. Williams SA, Russo GA (2015) Evolution of the hominoid vertebral column: The long and the short of it. Evol Anthropol Issues News Rev 24: 15–32. https://doi.org/10.1002/evan.21437
  11. Shkorbatova PolinaY, Lyakhovetskii VA, Merkulyeva NS, Veshchitskii AA, Bazhenova EY, Laurens J, Pavlova NV, Musienko PE (2019) Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. Anat Rec 302: 1628–1637. https://doi.org/10.1002/ar.24054
  12. Cadotte DW, Cadotte A, Cohen-Adad J, Fleet D, Livne M, Wilson JR, Mikulis D, Nugaeva N, Fehlings MG (2015) Characterizing the location of spinal and vertebral levels in the human cervical spinal cord. Am J Neuroradiol 36: 803–810. https://doi.org/10.3174/ajnr.A4192
  13. De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, Callot V, Cohen-Adad J (2017) SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage 145: 24–43. https://doi.org/10.1016/j.neuroimage.2016.10.009
  14. Cuellar CA, Mendez AA, Islam R, Calvert JS, Grahn PJ, Knudsen B, Pham T, Lee KH, Lavrov IA (2017) The role of functional neuroanatomy of the lumbar spinal cord in effect of epidural stimulation. Front Neuroanat 11: 82. https://doi.org/10.3389/fnana.2017.00082
  15. Eldridge L (1984) Vertebral location of cord segments innervating cat hind limb musculature. Exp Neurol 83: 193–198. https://doi.org/10.1016/0014-4886(84)90057-8
  16. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100: 297–379. https://doi.org/10.1002/cne.901000205
  17. Sengul G, Watson C, Tanaka I, Paxinos G (2013) Atlas of the spinal cord of the rat, mouse, marmoset, rhesus, and human. Elsevier AP. Amsterdam.
  18. Shek JW, Wen GY, Wisniewski HM (1986) Atlas of the rabbit brain and spinal cord. Karger. Basel München Paris.
  19. Veshchitskii A, Shkorbatova P, Merkulyeva N (2022) Neurochemical atlas of the cat spinal cord. Front Neuroanat 16: 1034395. https://doi.org/10.3389/fnana.2022.1034395
  20. Asman AJ, Bryan FW, Smith SA, Reich DS, Landman BA (2014) Groupwise multi-atlas segmentation of the spinal cord’s internal structure. Med Image Anal 18: 460–471. https://doi.org/10.1016/j.media.2014.01.003
  21. Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: Сhallenges, methods, and applications. Comput Math Methods Med 2015: 450341. https://doi.org/10.1155/2015/450341
  22. Fasse A, Newton T, Liang L, Agbor U, Rowland C, Kuster N, Gaunt R, Pirondini E, Neufeld E (2024) A novel CNN-based image segmentation pipeline for individualized feline spinal cord stimulation modeling. J Neural Eng 21. https://doi.org/10.1088/1741-2552/ad4e6b
  23. Shao H-C, Peng C-Y, Wu J-R, Lin C-W, Fang S-Y, Tsai P-Y, Liu Y-H (2021) From IC layout to die photograph: A CNN-based data-driven approach. IEEE Trans Comput-Aided Des Integr Circuits Syst 40: 957–970. https://doi.org/10.1109/TCAD.2020.3015469
  24. Liang C, Gao D, Hubert M, Yin X, Gao C (2011) A boundary-line method for pattern recognition on real particles. Powder Technol 213: 155–161. https://doi.org/10.1016/j.powtec.2011.07.028
  25. Merkus HG (2009) Particle Size, Size Distributions and Shape. In: Particle Size Measurements. Springer Netherlands. Dordrecht. 13–42.
  26. Iqbal K, Odetayo MO, James A (2012) Content-based image retrieval approach for biometric security using colour, texture and shape features controlled by fuzzy heuristics. J Comput Syst Sci 78: 1258–1277. https://doi.org/10.1016/j.jcss.2011.10.013
  27. Watson C, Paxinos G, Kayalioglu G (2009) The spinal cord 1st ed. Elsevier/Acad Press. Amsterdam Boston.
  28. Hu M-K (1962) Visual pattern recognition by moment invariants. IEEE Trans Inf Theory 8: 179–187. https://doi.org/10.1109/TIT.1962.1057692
  29. Sáenz-Gamboa JJ, Domenech J, Alonso-Manjarrés A, Gómez JA, De La Iglesia-Vayá M (2023) Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images. Artif Intell Med 140: 102559. https://doi.org/10.1016/j.artmed.2023.102559
  30. Tsagkas C, Horvath-Huck A, Haas T, Amann M, Todea A, Altermatt A, Müller J, Cagol A, Leimbacher M, Barakovic M, Weigel M, Pezold S, Sprenger T, Kappos L, Bieri O, Granziera C, Cattin P, Parmar K (2023) Fully automatic method for reliable spinal cord compartment segmentation in multiple sclerosis. Am J Neuroradiol 44: 218–227. https://doi.org/10.3174/ajnr.A7756
  31. Vanderhorst VGJM, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382: 46–76. https://doi.org/10.1002/(SICI)1096-9861(19970526)382:1<46::AID-CNE4>3.0.CO;2-K
  32. Порсева ВВ, Шилкин ВВ (2016) Сегмент спинного мозга: реальность или миф. В сб: Достижения и инновации в современной морфологии: сб трудов науч-практ конф посвящ 115-летию со дня рожд акад ДМ Голуба. Минск. Беларусь 101–104. [Porseva VV, Shilkin VV (2016) Spinal cord segment: Reality or myth. In: Achievements and innovations in modern morphology: Collection of works of scientific and practical conference dedicated to the 115th anniversary of the birth of academ D Golub. Minsk. Belarus 101–104. (In Russ)].
  33. Gross C, Ellison B, Buchman AS, Terasawa E, VanderHorst VG (2017) A novel approach for assigning levels to monkey and human lumbosacral spinal cord based on ventral horn morphology. PLoS One 12: e0177243. https://doi.org/10.1371/journal.pone.0177243
  34. Harrison M, O’Brien A, Adams L, Cowin G, Ruitenberg MJ, Sengul G, Watson C (2013) Vertebral landmarks for the identification of spinal cord segments in the mouse. NeuroImage 68: 22–29. https://doi.org/10.1016/j.neuroimage.2012.11.048
  35. Powers JM, Ioachim G, Stroman PW (2018) Ten key insights into the use of spinal cord fMRI. Brain Sci 8: 173. https://doi.org/10.3390/brainsci8090173
  36. Malinska J, Hubackova E, Malinsky J (1976) A topographical and quantitative anatomical study of the spinal cord in the mole. Acta Univ Palacky Olomus Fac Med 76: 169–178.
  37. Ko H-Y, Park JH, Shin YB, Baek SY (2004) Gross quantitative measurements of spinal cord segments in human. Spinal Cord 42: 35–40. https://doi.org/10.1038/sj.sc.3101538
  38. Thomas CE, Combs CM (1965) Spinal cord segments. B Gross structure in the adult monkey. Am J Anat 116: 205–216. https://doi.org/10.1002/aja.1001160110
  39. Mendez A, Islam R, Latypov T, Basa P, Joseph OJ, Knudsen B, Siddiqui AM, Summer P, Staehnke LJ, Grahn PJ, Lachman N, Windebank AJ, Lavrov IA (2021) Segment-specific orientation of the dorsal and ventral roots for precise therapeutic targeting of human spinal cord. Mayo Clin Proc 96: 1426–1437. https://doi.org/10.1002/aja.1001160110
  40. Mustapha OA, Aderounmu OA, Olude MA, Okandeji ME, Akinloye AK, Oke BO, Olopade JO (2015) Anatomical studies on the spinal cord of the greater cane rat (Thryonomys swinderianus, Temminck) I: Gross morphometry. Niger Vet J 36: 1192–1202.
  41. Klein S, Staring M, Murphy K, Viergever MA, Pluim J (2010) elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29: 196–205. https://doi.org/10.1109/TMI.2009.2035616
  42. Fiederling F, Hammond LA, Ng D, Mason C, Dodd J (2021) Tools for efficient analysis of neurons in a 3D reference atlas of whole mouse spinal cord. Cell Rep Methods 1: 100074. https://doi.org/10.1016/j.crmeth.2021.100074

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».