Identifying a therapeutic window for intranasal insulin administration in a two-vessel rat model of forebrain ischemia and investigating the mechanisms of its neuroprotective action

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cerebral ischemia is a significant medical and social issue, necessitating the development of effective treatment strategies. Due to the complex pathogenesis and prolonged recovery period associated with this condition, drugs with pleiotropic effects, such as intranasally administered insulin (IAI), are of the greatest interest. IAI sprayed in the nasal cavity enters the brain, regulating metabolism through central mechanisms, has neuroprotective and neuroregulatory effects. It has been proven to be effective in the treatment of neurodegenerative diseases, although data on its effectiveness in cerebral ischemia remain limited. The aim of the work was to search for a “therapeutic window” and evaluate the mechanisms of the
neuroprotective effect of IAI when used in rats with cerebral ischemia. Rats with two-vessel forebrain ischemia were administered IAI 2 and 4 hours after an episode of ischemia at a dose of 0.5 IU/rat/day, and then daily for a 7-day period after ischemia. It has been demonstrated that IAI is more effective if animals were treated 2 hours after the ischemic event, compared with administration after 4 hours, despite the subsequent 7-day of IAI treatment. When administered 2 hours after an ischemic event, IAI has been shown to support the expression of components of insulin signaling genes in the hippocampus and normalize the number of cells in the CA1 region. It also stimulates the expression of the anti-apoptotic Bcl-2 gene and reduces the expression of the Gfap and Aif1 genes, which are markers of astrocytes and microglia, and this indicates the anti-inflammatory effect of IAI. In addition, for the first time IAI has been found to stimulate the activity of the thyroid system and prevent the development of post-ischemic hypothyroidism. All these effects were less pronounced or not observed when IAI was administered 4 hours after the ischemic event. Thus, for the first time, we described a “therapeutic window” for the use of IAI in cerebral ischemia and evaluated some of the mechanisms underlying its neuroprotective effects.

About the authors

I. I. Zorina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
Saint-Petersburg, Russia

A. S. Pechalnova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
Saint-Petersburg, Russia

E. E. Chernenko

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
Saint-Petersburg, Russia

D. K. Avrova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
Saint-Petersburg, Russia

K. V. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: zorina.inna.spb@gmail.com
Saint-Petersburg, Russia

A. O. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: zorina.inna.spb@gmail.com
Saint-Petersburg, Russia

References

  1. Feigin VL, Brainin M, Norrving B, Martins SO, Pandian J, Lindsay P, Grupper M, Rautalin I (2025) World Stroke Organization: Global Stroke Fact Sheet 2025. Int J Stroke 20: 132–144. https://doi.org/10.1177/17474930241308142
  2. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38: 1167–1186. https://doi.org/10.1007/s10072-017-2938-1
  3. Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA (2023) Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 23: 407–431. https://doi.org/10.1007/s11910-023-01282-2
  4. Liddelow SA, Barres BA (2017) Reactive astrocytes: Рroduction, function, and therapeutic potential. Immunity 46: 957–967. https://doi.org/10.1016/j.immuni.2017.06.006
  5. Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108: 608–622. https://doi.org/10.1016/j.neuron.2020.08.012
  6. Sidorov E, Paul A, Xu C, Nouh CD, Chen A, Gosmanova A, Gosmanov N, Gordon DL, Baranskaya I, Chainakul J, Hamilton R, Mdzinarishvili A (2023) Decrease of thyroid function after ischemic stroke is related to stroke severity. Thyroid Res 16: 28. https://doi.org/10.1186/s13044-023-00160-w
  7. Shafia S, Khoramirad A, Akhoundzadeh K (2024) Thyroid hormones and stroke, the gap between clinical and experimental studies. Brain Res Bull 213: 110983. https://doi.org/ 10.1016/j.brainresbull.2024.110983
  8. Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, Currò D (2016) Thyroid Hormones, Oxidative Stress, and Inflammation. Mediat Inflamm 2016: 6757154. https://doi.org/10.1155/2016/6757154
  9. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL (2019) Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 50: e344–e418. https://doi.org/10.1161/STR.0000000000000211
  10. Savitz SI, Baron JC, Fisher M, STAIR X Consortium (2019) Stroke Treatment Academic Industry Roundtable X: Brain Cytoprotection Therapies in the Reperfusion Era. Stroke 50: 1026–1031. https://doi.org/10.1161/STROKEAHA.118.023927
  11. Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ (2021) Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrin Metab 321: E156–E163. https://doi.org/10.1152/ajpendo.00642.2020
  12. Shpakov AO, Zorina II, Derkach KV (2022) Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 24: 3278. https://doi.org/10.3390/ijms24043278
  13. Zorina II, Avrova NF, Zakharova IO, Shpakov AO (2023) Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. Biochemistry (Mosc) 88: 374–391. https://doi.org/10.1134/S0006297923030070
  14. Zakharova IO, Bayunova LV, Avrova DK, Tretyakova AD, Shpakov AO, Avrova NF (2024) The Autophagic and Apoptotic Death of Forebrain Neurons of Rats with Global Brain Ischemia Is Diminished by the Intranasal Administration of Insulin: Possible Mechanism of Its Action. Curr Issues Mol Biol 46: 6580–6599. https://doi.org/10.3390/cimb46070392
  15. Zorina II, Zakharova IO, Bayunova LV, Avrova NF (2018) Insulin Administration Prevents Accumulation of Conjugated Dienes and Trienes and Inactivation of Na+, K+-ATPase in the Rat Cerebral Cortex during Two-Vessel Forebrain Ischemia and Reperfusion. J Evol Biochem Phys 54: 246–249. https://doi.org/10.1134/S0022093018030109
  16. Song Y, Ding W, Bei Y, Xiao Y, Tong HD, Wang LB, Ai LY (2018) Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes. Biomed Pharmacother 104: 474–484. https://doi.org/10.1016/j.biopha.2018.04.097
  17. Simon KU, Neto EW, Tramontin NDS, Canteiro PB, Pereira BDC, Zaccaron RP, Silveira PCL, Muller AP (2020) Intranasal insulin treatment modulates the neurotropic, inflammatory, and oxidant mechanisms in the cortex and hippocampus in a low-grade inflammation model. Peptides 123: 170175. https://doi.org/10.1016/j.peptides.2019.170175
  18. Brabazon F, Wilson CM, Jaiswal S, Reed J, Frey WHN, Byrnes KR (2017) Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab 37: 3203–3218. https://doi.org/10.1177/0271678X16685106
  19. Guo J, Dhaliwall JK, Chan KK, Ghanim H, Al Koudsi N, Lam L, Madadi G, Dandona P, Giacca A, Bendeck MP (2013) In vivo Effect of Insulin to Decrease Matrix Metalloproteinase-2 and -9 Activity after Arterial Injury. J Vasc Res 50: 279–288. https://doi.org/10.1159/000351611
  20. Xu LB, Huang HD, Zhao M, Zhu GC, Xu Z (2021) Intranasal Insulin Treatment Attenuates Metabolic Distress and Early Brain Injury After Subarachnoid Hemorrhage in Mice. Neurocrit Care 2021 34: 154–166. https://doi.org/10.1007/s12028-020-01011-4
  21. Zorina II, Pechalnova AS, Chernenko EE, Derkach KV, Shpakov AO (2024) Effect of Intranasal Insulin on Metabolic Parameters and Inflammation Factors in Diabetic Rats Exposed to Cerebral Ischemia-Reperfusion. J Evol Biochem Phys 60: 1095–1107. https://doi.org/10.1134/S0022093024030190
  22. Dandona P, Aljada A, Mohanty P, Ghanim H, Bandyopadhyay A, Chaudhuri A (2003) Insulin suppresses plasma concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes Care 26: 3310–3314. https://doi.org/10.2337/diacare.26.12.3310
  23. Hallschmid M (2021) Intranasal insulin. J Neuroendocrinol 33: e12934. https://doi.org/10.1111/jne.12934
  24. Novak V, Mantzoros CS, Novak P, McGlinchey R, Dai W, Lioutas V, Buss S, Fortier CB, Khan F, Aponte Becerra L, Ngo LH (2022) MemAID: Memory advancement with intranasal insulin vs. placebo in type 2 diabetes and control participants: А randomized clinical trial. J Neurol 269: 4817–4835. https://doi.org/10.1007/s00415-022-11119-6
  25. Picone P, Sabatino MA, Ditta LA, Amato A, San Biagio PL, Mulè F, Giacomazza D, Dispenza C, Di Carlo M (2018) Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release 270: 23–36. https://doi.org/10.1016/j.jconrel.2017.11.040
  26. Fan LW, Carter K, Bhatt A, Pang Y (2019) Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen Res 14: 1046–1051. https://doi.org/10.4103/1673-5374.250624
  27. Zhu Y, Huang Y, Yang J, Tu R, Zhang X, He WW, Hou CY, Wang XM, Yu JM, Jiang GH (2022) Intranasal insulin ameliorates neurological impairment after intracerebral hemorrhage in mice. Neural Regen Res 17: 210–216. https://doi.org/10.4103/1673-5374.314320
  28. Smith CJ, Sims SK, Nguyen S, Williams A, McLeod T, Sims-Robinson C (2023) Intranasal insulin helps overcome brain insulin deficiency and improves survival and post-stroke cognitive impairment in male mice. J Neurosci Res 101: 1757–1769. https://doi.org/10.1002/jnr.25237
  29. Raval AP, Liu C, Hu BR (2009) Rat Model of Global Cerebral Ischemia: The Two-Vessel Occlusion (2VO) Model of Forebrain Ischemia. In: Chen J, Xu ZC, Xu XM, Zhang JH (eds) Animal Models of Acute Neurological Injuries. Springer Protocols Handbooks. Hum Press. https://doi.org/10.1007/978-1-60327-185-1_7
  30. Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Acad Press, San Diego. (No. of pages: 456 Language: English Edition: 6 Published: November 2, 2006 Imprint: Acad Press. eBook ISBN: 9780080475134.
  31. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1108. https://doi.org/10.1038/nprot.2008.73
  32. Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W (2022) Signaling pathways involved in ischemic stroke: Мolecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7: 215. https://doi.org/10.1038/s41392-022-01064-1
  33. Lin S, Fan LW, Rhodes PG, Cai Z (2009) Intranasal administration of IGF-1 attenuates hypoxic–ischemic brain injury in neonatal rats. Exp Neurol 217: 361–370. https://doi.org/10.1016/j.expneurol.2009.03.021
  34. Lin S, Rhodes PG, Cai Z (2011) Whole body hypothermia broadens the therapeutic window of intranasally administered IGF-1 in a neonatal rat model of cerebral hypoxia-ischemia. Brain Res 18: 246–256. https://doi.org/10.1016/j.brainres.2011.02.013
  35. Ding PF, Zhang HS, Wang J, Gao YY, Mao JN, Hang CH, Li W (2022) Insulin resistance in ischemic stroke: Mechanisms and therapeutic approaches. Front Endocrinol (Lausanne) 13: 1092431. https://doi.org/10.3389/fendo.2022.1092431
  36. Zorina II, Shpakov AO (2024) Brain Insulin Resistance in Neurological Disorders of Various Genesis: Current State and Treatment Approaches. Neurochem J 18: 603–616. https://doi.org/10.1134/S1819712424700247
  37. Saleem S, Wang D, Zhao T, Sullivan RD, Reed GL (2021) Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 460: 120–129. https://doi.org/ 10.1016/j.neuroscience.2021.01.003
  38. Turner RJ, Sharp FR (2016) Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke. Front Cell Neurosci 10: 56. https://doi.org/10.3389/fncel.2016.00056
  39. Zakharova IO, Sokolova TV, Bayunova LV, Zorina II, Rychkova MP, Shpakov AO, Avrova NF (2019) The Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on the Modulation of Akt, GSK-3beta, ERK1/2, and AMPK Activities. Int J Mol Sci 20: 3702. https://doi.org/10.3390/ijms20153702
  40. Tuwar MN, Chen W-H, Chiwaya AM, Yeh H-L, Nguyen MH, Bai C-H (2023) Brain-Derived Neurotrophic Factor (BDNF) and Translocator Protein (TSPO) as Diagnostic Biomarkers for Acute Ischemic Stroke. Diagnostics 13: 2298. https://doi.org/10.3390/diagnostics13132298
  41. Jiang X, Xing H, Wu J, Du R, Liu H, Chen J, Wang J, Wang C, Wu Y (2017) Prognostic value of thyroid hormones in acute ischemic stroke – a metaanalysis. Sci Rep 7: 16256. https://doi.org/10.1038/s41598-017-16564-2. Erratum in: Sci Rep 8: 6651. https://doi.org/10.1038/s41598-018-24995-8
  42. Sahoo JP, Selviambigapathy J, Kamalanathan S, Nagarajan K, Vivekanandan M (2016) Effect of steroid replacement on thyroid function and thyroid autoimmunity in Addison's disease with primary hypothyroidism. Indian J Endocrinol Metab 20: 162–166. https://doi.org/10.4103/2230-8210.176356
  43. Murolo M, Di Vincenzo O, Cicatiello AG, Scalfi L, Dentice M (2022) Cardiovascular and Neuronal Consequences of Thyroid Hormones Alterations in the Ischemic Stroke. Metabolites 13: 22. https://doi.org/10.3390/metabo13010022
  44. Chong AC, Vogt MC, Hill AS, Brüning JC, Zeltser LM (2014) Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness. Mol Metab 4: 83–92. https://doi.org/10.1016/j.molmet.2014.12.001
  45. Derkach KV, Bogush IV, Berstein LM, Shpakov AO The influence of intranasal insulin on hypothalamic-pituitary-thyroid axis in normal and diabetic rats. Horm Metab Res 47: 916–924. https://doi.org/10.1055/s-0035-1547236
  46. Kouidhi S, Clerget-Froidevaux MS (2018) Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Int J Mol Sci 19: 2017. https://doi.org/10.3390/ijms19072017
  47. Sadana P, Coughlin L, Burke J, Woods R, Mdzinarishvili A (2015) Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation. J Neurol Sci 354: 37–45. https://doi.org/10.1016/j.jns.2015.04.042
  48. Bernal J (2017) Thyroid hormone regulated genes in cerebral cortex development. J Endocrinol 232: R83–R97. https://doi.org/10.1530/JOE-16-0424
  49. Hayes CA, Valcarcel-Ares MN, Ashpole NM (2021) Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab 41: 2475–2491. https://doi.org/10.1177/0271678X211000894

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».