Formation of active forms of oxygen and nitrogen in water under the influence of cold plasma
- 作者: Pavlik T.I.1,2, Gusein-zade N.G.1, Gudkova V.V.3, Osipov A.N.2
-
隶属关系:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
- Рeoples Friendship University of Russia (RUDN University)
- 期: 卷 65, 编号 2 (2025)
- 页面: 190-200
- 栏目: РАДИАЦИОННАЯ БИОХИМИЯ
- URL: https://bakhtiniada.ru/0869-8031/article/view/308699
- DOI: https://doi.org/10.31857/S0869803125020062
- EDN: https://elibrary.ru/lpbjpm
- ID: 308699
如何引用文章
详细
Cold plasma and solutions treated with it are widely used in various fields of medicine. Biomedical effects of cold plasma are primarily associated with the generation of active forms of oxygen and nitrogen. The CAPCO cold plasma source (GPI RAS) generates hydrogen peroxide, nitrogen oxide (II), nitrite ions and nitrate ions in an aqueous solution. Hydrogen peroxide is formed through the Fenton reaction – two-electron reduction of the oxygen molecule. The use of a plasma discharge in an argon flow reduces the generation of hydrogen peroxide compared to atmospheric plasma and eliminates the formation of nitrogen derivatives. The amount of oxidation reaction products initiated by argon plasma is 30% less than that of atmospheric plasma. It is recommended to use direct piezo discharge in air to produce activated solutions used in medicine.
作者简介
T. Pavlik
Prokhorov General Physics Institute of the Russian Academy of Sciences; Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
编辑信件的主要联系方式.
Email: office@gpi.ru
Moscow, Russia; Moscow, Russia
N. Gusein-zade
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: office@gpi.ru
Moscow, Russia
V. Gudkova
Рeoples Friendship University of Russia (RUDN University)
Email: rudn@rudn.ru
Moscow, Russia
A. Osipov
Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
Email: rsmu@rsmu.ru
Moscow, Russia
参考
- Matthes R., Jablonowski L., Miebach L. et al. In-Vitro Biofilm Removal Efficacy Using Water Jet in Combination with Cold Plasma Technology on Dental Titanium Implants. Int. J. Mol. Sci. 2023;24(2):1606.
- Sampaio A. da G., Chiappim W., Milhan N.V.M., Neto B.B., and RP, Koga-Ito C.Y. Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. Int. J. Mol. Sci. 2022;23:13893.
- Dubey S.K., Parab S., Alexander A., et al. Cold atmospheric plasma therapy in wound healing. Proc. Biochem. 2021;112:112–23.
- Bakhtiyari-Ramezani M., Naeimabadi A., Shakeri F. Plasma Activated Water Solution as an Efficient Approach for Antiseptic and Wound Healing Applications: An Animal Model. PLasma Med. 2024;14(1): 1–16.
- Tanaka H., Bekeschus S., Yan D. et al. Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers (Basel). 2021;13(7):1737.
- Solé-Martí X. Espona-Noguera A., Ginebra M.-P., Canal C. Plasma-Conditioned Liquids as Anticancer Therapies In Vivo: Current State and Future Directions. Cancers (Basel). 2021;13(3):452.
- Niedźwiedź I., Waśko A. Pawłat J., Polak-Berecka M. The State of Research on Antimicrobial Activity of Cold Plasma. Pol. J. Microbiol. 2019;68(2): 153–64.
- Lu X., Laroussi M., Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sour. Sci. Technol. 2012;21(3):034005.
- Shakya A., Pradhan S.P., Banset N. et al. Characterization and Assessment of Cold Plasma for Cancer Treatment. Plasma Med. 2022;12(2):1–14.
- Girard F., Badets V., Blanc S. et al. Formation of Reactive Nitrogen Species including Peroxynitrite in Physiological Buffer exposed to Cold Atmospheric Plasma. RSC Adv. 2016;6:78457.
- Kondeti V.S.S.K., Phan C.Q., Wende K. et al. Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radic. Biol. Med. 2018;124:275–87.
- Kovačević V.V., Dojčinović B.P. Jović M. et al. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J. Phys. D: Appl. Phys. 2017;50: 155205.
- Lindsay A., Anderson C., Slikboer E. et al. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets. J. Phys. D: Appl. Phys. 2015;48:424007.
- Gudkov S.V., Sarimov R.M., Astashev M.E. et al. Modern physical methods and technologies in agriculture. Phys. Usp. 2024;67:194–210.
- Lu X., Naidis G.V., Laroussi M. et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016;630:1–84.
- Zeghioud H., Nguyen-Tri P., Khezami L. et al. Review on discharge Plasma for water treatment: mechanism, reactor geometries, active species and combined processes. J. Water Proc. Engineer. 2020;38:101664.
- Konchekov E.M., Gusein-zade N., Burmistrov D.E. et al. Advancements in Plasma Agriculture: A Review of Recent Studies. Int. J. Mol. Sci. 2023;24:15093.
- Joslin J M , McCall J R , Bzdek J.P. et al. Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications. Plasma Med. 2016;6(2): 135–77.
- Pogoda A., Pan Y., Röntgen M., Hasse S. Plasma-Functionalized Liquids for Decontamination of Viable Tissues: A Comparative Approach. Int. J. Mol. Sci. 2024;25(19):10791.
- Artemyev K.V., Bogachev N.N., Gusein-zade N.G. et al. Study of Characteristics of the Cold Atmospheric Plasma Source Based on a Piezo Transformer. Russian Physics J. 2020;62(11):105–11.
- Kolik L.V., Kharchev N.K., Borzosekov V.D. et al. RU181459U1 Low temperature plasma generator. 2018.
- Konchekov E.M., Gudkova V.V., Burmistrov D.E. et al. Bacterial Decontamination of Water-Containing Objects Using Piezoelectric Direct Discharge Plasma and Plasma Jet. Biomolecules. 2024;14:181.
- Artem’ev K.V., Malakhov D.V., Kolik L.V., Davydov A.M., Gusein-zade N.G. Electrical Parameters of a Piezoelectric Transformer-Generated Nanosecond Spark Discharge in Air. Bull. Lebedev Physics Institute. 2024;51:262–7.
- Korzec D. Hoppenthaler F., Nettesheim S. Piezoelectric Direct Discharge: Devices and Applications. Plasma. 2021;4:1–41.
- Gay C., Gebicki J.M. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal. Biochem 2000;284(2):217–20.
- Zhao Y.-M., Patange A., Sun D.W., Tiwari B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2020;19(6):3951–79.
补充文件
